Suppr超能文献

一种用于具有辅助协变量的纵向研究中失访情况的半参数贝叶斯方法。

A Semiparametric Bayesian Approach to Dropout in Longitudinal Studies with Auxiliary Covariates.

作者信息

Zhou Tianjian, Daniels Michael J, Müller Peter

机构信息

Department of Public Health Sciences, The University of Chicago.

Department of Statistics, University of Florida.

出版信息

J Comput Graph Stat. 2020;29(1):1-12. doi: 10.1080/10618600.2019.1617159. Epub 2019 Jul 2.

Abstract

We develop a semiparametric Bayesian approach to missing outcome data in longitudinal studies in the presence of auxiliary covariates. We consider a joint model for the full data response, missingness and auxiliary covariates. We include auxiliary covariates to "move" the missingness "closer" to missing at random (MAR). In particular, we specify a semiparametric Bayesian model for the observed data via Gaussian process priors and Bayesian additive regression trees. These model specifications allow us to capture non-linear and non-additive effects, in contrast to existing parametric methods. We then separately specify the conditional distribution of the missing data response given the observed data response, missingness and auxiliary covariates (i.e. the extrapolation distribution) using identifying restrictions. We introduce meaningful sensitivity parameters that allow for a simple sensitivity analysis. Informative priors on those sensitivity parameters can be elicited from subject-matter experts. We use Monte Carlo integration to compute the full data estimands. Performance of our approach is assessed using simulated datasets. Our methodology is motivated by, and applied to, data from a clinical trial on treatments for schizophrenia.

摘要

我们开发了一种半参数贝叶斯方法,用于处理纵向研究中存在辅助协变量时的缺失结局数据。我们考虑了一个针对完整数据响应、缺失情况和辅助协变量的联合模型。我们纳入辅助协变量,以使缺失情况“更接近”随机缺失(MAR)。具体而言,我们通过高斯过程先验和贝叶斯加法回归树为观测数据指定一个半参数贝叶斯模型。与现有的参数方法相比,这些模型规范使我们能够捕捉非线性和非加性效应。然后,我们利用识别性限制分别指定给定观测数据响应、缺失情况和辅助协变量时缺失数据响应的条件分布(即外推分布)。我们引入了有意义的敏感性参数,以便进行简单的敏感性分析。这些敏感性参数的信息性先验可以从主题专家那里获取。我们使用蒙特卡罗积分来计算完整数据的估计量。我们通过模拟数据集评估了我们方法的性能。我们的方法是受一项关于精神分裂症治疗的临床试验数据启发,并应用于该数据。

相似文献

1
A Semiparametric Bayesian Approach to Dropout in Longitudinal Studies with Auxiliary Covariates.
J Comput Graph Stat. 2020;29(1):1-12. doi: 10.1080/10618600.2019.1617159. Epub 2019 Jul 2.
3
Bayesian methods for missing covariates in cure rate models.
Lifetime Data Anal. 2002 Jun;8(2):117-46. doi: 10.1023/a:1014835522957.
4
Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates.
Biometrics. 2014 Mar;70(1):62-72. doi: 10.1111/biom.12121. Epub 2013 Dec 10.
5
Adjustment for missingness using auxiliary information in semiparametric regression.
Biometrics. 2010 Mar;66(1):115-22. doi: 10.1111/j.1541-0420.2009.01231.x. Epub 2009 May 7.
6
A Bayesian parametric approach to handle missing longitudinal outcome data in trial-based health economic evaluations.
J R Stat Soc Ser A Stat Soc. 2020 Feb;183(2):607-629. doi: 10.1111/rssa.12522. Epub 2019 Sep 26.
8
Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data.
BMC Med Res Methodol. 2024 Mar 1;24(1):56. doi: 10.1186/s12874-024-02164-y.
9
Bayesian methods for nonignorable dropout in joint models in smoking cessation studies.
J Am Stat Assoc. 2016;111(516):1454-1465. doi: 10.1080/01621459.2016.1167693. Epub 2017 Jan 5.

引用本文的文献

1
Statistical methods for clinical trials interrupted by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic: A review.
Stat Methods Med Res. 2024 Nov;33(11-12):2131-2143. doi: 10.1177/09622802241288350. Epub 2024 Oct 30.
2
A note on compatibility for inference with missing data in the presence of auxiliary covariates.
Stat Med. 2019 Mar 30;38(7):1190-1199. doi: 10.1002/sim.8025. Epub 2018 Nov 18.

本文引用的文献

1
Bayesian Approaches for Missing Not at Random Outcome Data: The Role of Identifying Restrictions.
Stat Sci. 2018 May;33(2):198-213. doi: 10.1214/17-STS630. Epub 2018 May 3.
2
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
J Am Stat Assoc. 2016;111(514):800-812. doi: 10.1080/01621459.2015.1044091. Epub 2016 Aug 18.
3
A framework for Bayesian nonparametric inference for causal effects of mediation.
Biometrics. 2017 Jun;73(2):401-409. doi: 10.1111/biom.12575. Epub 2016 Aug 1.
5
Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates.
Biometrics. 2014 Mar;70(1):62-72. doi: 10.1111/biom.12121. Epub 2013 Dec 10.
7
Efficient Gaussian process regression for large datasets.
Biometrika. 2013 Mar;100(1):75-89. doi: 10.1093/biomet/ass068.
9
Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.
Biometrics. 2011 Jun;67(2):536-45. doi: 10.1111/j.1541-0420.2010.01476.x. Epub 2010 Aug 19.
10
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验