Degen Olaf, Eitinger Thomas
Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany.
J Bacteriol. 2002 Jul;184(13):3569-77. doi: 10.1128/JB.184.13.3569-3577.2002.
HoxN, a high-affinity, nickel-specific permease of Ralstonia eutropha H16, and NhlF, a nickel/cobalt permease of Rhodococcus rhodochrous J1, are structurally related members of the nickel/cobalt transporter (NiCoT) family. These transporters have an eight-helix structure and are characterized by highly conserved segments with polar or charged amino acid residues in transmembrane domains (TMDs) II, III, V, and VI. Two histidine residues in a Ni2+ binding motif, the signature sequence of NiCoTs, in TMD II of HoxN have been shown to be crucial for activity. Replacement of the corresponding His residues in NhlF affected both Co2+ and Ni2+ uptake, demonstrating that NhlF employs a HoxN-like mechanism for transport of the two cations. Multiple alignments of bacterial NiCoT sequences identified a striking correlation between a hydrophobic residue (Val or Phe) in TMD II and a position in the center of TMD I occupied by either an Asn (as in HoxN) or a His (as in NhlF). Introducing an isoleucine residue at the latter position strongly reduced HoxN activity and abolished NhlF activity, suggesting that a Lewis base N-donor moiety is important. The Asn-to-His exchange had no effect on HoxN, whereas the converse replacement reduced NhlF-mediated Ni2+ uptake significantly. Replacement of the entire TMD I of HoxN by the respective NhlF segment resulted in a chimera that transported Ni2+ and Co2+ with low capacity. The Val-to-Phe exchange in TMD II of HoxN led to a considerable rise in Ni2+ uptake capacity and conferred to the variant the ability to transport Co2+. NhlF activity dropped in response to the converse mutation. Our data predict that TMDs I and II in NiCoTs spatially interact to form a critical part of the selectivity filter. As seen for the V64F variant of HoxN, modification of this site can increase the velocity of transport and concomitantly reduce the specificity.
HoxN是嗜麦芽窄食单胞菌H16的一种高亲和力、镍特异性通透酶,而NhlF是红球菌J1的一种镍/钴通透酶,它们是镍/钴转运蛋白(NiCoT)家族中结构相关的成员。这些转运蛋白具有八螺旋结构,其特征是在跨膜结构域(TMD)II、III、V和VI中具有带有极性或带电荷氨基酸残基的高度保守片段。HoxN的TMD II中Ni2+结合基序(NiCoT的特征序列)中的两个组氨酸残基已被证明对活性至关重要。NhlF中相应His残基的替换影响了Co2+和Ni2+的摄取,表明NhlF采用类似HoxN的机制来转运这两种阳离子。细菌NiCoT序列的多重比对表明,TMD II中的一个疏水残基(Val或Phe)与TMD I中心由Asn(如在HoxN中)或His(如在NhlF中)占据的位置之间存在显著相关性。在后者位置引入异亮氨酸残基会强烈降低HoxN活性并消除NhlF活性,这表明路易斯碱N供体部分很重要。Asn到His的交换对HoxN没有影响,而相反的替换则显著降低了NhlF介导的Ni2+摄取。用各自的NhlF片段替换HoxN的整个TMD I产生了一种嵌合体,该嵌合体以低容量转运Ni2+和Co2+。HoxN的TMD II中Val到Phe的交换导致Ni2+摄取能力显著提高,并赋予变体转运Co2+的能力。NhlF活性因相反的突变而下降。我们的数据预测,NiCoT中的TMD I和II在空间上相互作用,形成选择性过滤器的关键部分。如HoxN的V64F变体所示,该位点的修饰可以提高转运速度并同时降低特异性。