Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
BMC Genomics. 2024 Jul 15;25(1):692. doi: 10.1186/s12864-024-10594-7.
Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order.
Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms.
Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
缆细菌是脱硫杆菌科的丝状成员,能够在海洋和淡水沉积物中进行厘米级的电子传输。这种长距离电子传输是由嵌入在细胞包膜中的平行导电纤维网络介导的。这种纤维网络能够有效地沿着厘米长的丝状纤维的整个长度传输电流。最近的分析表明,这些纤维由含有新型镍辅因子的金属蛋白组成,这表明缆细菌已经进化出一种独特的生物电子传输形式。这种依赖镍的传导机制表明缆细菌强烈依赖镍作为生物合成资源。在这里,我们对与镍稳态相关的基因进行了全面的比较基因组分析。我们比较了缆细菌的基因组编码适应镍的能力与脱硫杆菌科的相关成员和脱硫杆菌目的其他成员。
目前,由 Candidatus Electrothrix 和 Candidatus Electronema 属组成的单系缆细菌分支有 4 个封闭基因组。为了增加系统发育覆盖范围,我们还生成了两个缆细菌的封闭基因组:Candidatus Electrothrix gigas 菌株 HY10-6 和 Candidatus Electrothrix antwerpensis 菌株 GW3-4,它们分别是各自物种的第一个封闭基因组。在 38 个缆细菌基因组(包括 6 个封闭基因组)的数据库中鉴定出了镍稳态基因。将基因的普遍性与脱硫杆菌目中的 19 个相关菌株的基因组进行了比较,结果表明缆细菌中有几种基因组编码的适应镍稳态的机制。系统发育分析表明,缆细菌的镍转运蛋白、镍结合酶和镍伴侣蛋白与脱硫杆菌科以外的生物体有关,其中一些蛋白质与脱硫杆菌门以外的生物体有关。值得注意的是,缆细菌编码一种独特的周质镍外排蛋白 RcnA,它具有一个假定的细胞质富含组氨酸的环,与其他生物体中的 RcnA 同源物相比,这个环有很大的扩展。
与密切相关的属相比,缆细菌基因组显示出明显的遗传适应镍利用的能力。这与缆细菌中独特发现的镍依赖传导机制完全一致。