Suppr超能文献

血液中计算碱剩余的准确性。

The accuracy of calculated base excess in blood.

作者信息

Lang Werner, Zander Rolf

机构信息

Institut für Physiologie und Pathophysiologie, Fachbereich Medizin der Johannes Gutenberg-Universität, Mainz, Germany.

出版信息

Clin Chem Lab Med. 2002 Apr;40(4):404-10. doi: 10.1515/CCLM.2002.065.

Abstract

Most equations used for calculation of the base excess (BE, mmol/l) in human blood are based on the fundamental equation derived by Siggaard-Andersen and called the Van Slyke equation: BE = Z x [[cHCO3-(P) - C7.4 HCO3-(P)] + beta x (pH -7.4)]. In simple approximation, where Z is a constant which depends only on total hemoglobin concentration (cHb, g/dl) in blood, three equations were tested: the ones proposed by Siggaard-Andersen (SA), the National Committee for Clinical Laboratory Standards (NCCLS) or Zander (ZA). They differ only slightly in the solubility factor for carbon dioxide (alphaCO2, mmol/l x mmHg) and in the apparent pK(pK'), but more significantly in the plasma bicarbonate concentration at reference pH (C7.4HCO3-(P), mmol/l) and in beta, the slope of the CO2-buffer line (mmol/l) for whole blood. Furthermore, the approximation was improved either by variation in Z (r(c)), or in the apparent pK (pK) with changing pH. Thus, from a total of seven equations and from a reference set for pH, pCO2 and BE taken from the literature (n=148), the base excess was calculated. Over the whole range of base excess (-30 to +30 mmol/l) and PCO2 (12 to 96 mmHg), mean accuracy (deltaBE, mmol/l) was greatest in the simple equation according to Zander and decreased in the following order: +/-0.86 (ZA); +/-0.94 (ZA, r(c)); +/-0.96 (SA, r(c)); +/-1.03 (NCCLS, r(c)); +/-1.40 (NCCLS); +/-1.48 (SA); and +/-1.50 (pK'). For all clinical purposes, the Van Slyke equation according to Zander is the best choice and can be recommended in the following form: BE= (1 -0.0143 x cHb) x [[0.0304 x PCO2 x 10pH-6.1-24.26] + (9.5+1.63 x cHb) x (pH -7.4)] - 0.2 x cHb x (1-sO2), where the last term is a correction for oxygen saturation (sO2). Hence, base excess can be obtained with high accuracy (<1 mmol/l) from the measured quantities of pH, pCO2, cHb, and SO2 in any sample, irrespective of whether venous or arterial blood is used.

摘要

大多数用于计算人体血液碱剩余(BE,mmol/L)的公式都是基于西格gaard - 安德森推导的基本公式,即范斯莱克公式:BE = Z×[[cHCO₃⁻(P) - C₇.₄HCO₃⁻(P)] + β×(pH - 7.4)]。在简单近似情况下,其中Z是仅取决于血液中总血红蛋白浓度(cHb,g/dl)的常数,测试了三个公式:西格gaard - 安德森(SA)提出的公式、美国国家临床实验室标准委员会(NCCLS)提出的公式以及赞德(ZA)提出的公式。它们在二氧化碳溶解度因子(αCO₂,mmol/L×mmHg)和表观pK(pK')方面仅略有不同,但在参考pH下的血浆碳酸氢盐浓度(C₇.₄HCO₃⁻(P),mmol/L)以及全血的二氧化碳缓冲线斜率β(mmol/L)方面差异更为显著。此外,通过改变Z(r(c))或表观pK(pK)随pH变化来改进近似值。因此,根据文献中的pH、pCO₂和BE参考集(n = 148),从总共七个公式中计算出碱剩余。在整个碱剩余范围(-30至+30 mmol/L)和PCO₂范围(12至96 mmHg)内,根据赞德的简单公式平均准确度(δBE,mmol/L)最高,按以下顺序降低:±0.86(ZA);±0.94(ZA,r(c));±0.96(SA,r(c));±1.03(NCCLS,r(c));±1.40(NCCLS);±1.48(SA);以及±1.50(pK')。对于所有临床目的,根据赞德的范斯莱克公式是最佳选择,可按以下形式推荐:BE = (1 - 0.0143×cHb)×[[0.0304×PCO₂×10^(pH - 6.1) - 24.26] + (9.5 + 1.63×cHb)×(pH - 7.4)] - 0.2×cHb×(1 - sO₂),其中最后一项是对氧饱和度(sO₂)的校正。因此,无论使用静脉血还是动脉血,都可以从任何样本中测量的pH、pCO₂、cHb和SO₂量高精度(<1 mmol/L)地获得碱剩余。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验