Basko M M, Meyer-ter-Vehn J
Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany.
Phys Rev Lett. 2002 Jun 17;88(24):244502. doi: 10.1103/PhysRevLett.88.244502. Epub 2002 May 30.
Scaling laws governing implosions of thin shells in converging flows are established by analyzing the implosion trajectories in the (A,M) parametric plane, where A is the in-flight aspect ratio, and M is the implosion Mach number. Three asymptotic branches, corresponding to three implosion phases, are identified for each trajectory in the limit of A,M >>1. It is shown that there exists a critical value gamma(cr) = 1+2/nu (nu = 1,2 for, respectively, cylindrical and spherical flows) of the adiabatic index gamma, which separates two qualitatively different patterns of the density buildup in the last phase of implosion. The scaling of the stagnation density rho(s) and pressure P(s) with the peak value M(0) of the Mach number is obtained.
通过分析(A,M)参数平面中的内爆轨迹,建立了控制汇聚流中薄壳内爆的缩放定律,其中A是飞行中的纵横比,M是内爆马赫数。在A,M>>1的极限情况下,为每个轨迹确定了对应于三个内爆阶段的三个渐近分支。结果表明,绝热指数γ存在一个临界值γ(cr)=1 + 2/ν(对于圆柱流和球流,ν分别为1和2),它将内爆最后阶段密度增长的两种定性不同模式区分开来。得到了滞止密度ρ(s)和压力P(s)与马赫数峰值M(0)的缩放关系。