Suppr超能文献

用于惯性约束聚变应用的温稠密氘等离子体的第一性原理热导率

First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

作者信息

Hu S X, Collins L A, Boehly T R, Kress J D, Goncharov V N, Skupsky S

机构信息

Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043105. doi: 10.1103/PhysRevE.89.043105. Epub 2014 Apr 16.

Abstract

Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.

摘要

烧蚀材料和氘 - 氚(DT)燃料的热导率(κ)在理解和设计惯性约束聚变(ICF)内爆过程中起着重要作用。广泛应用于理想等离子体热传导的斯皮策模型,对于在爆聚靶中被激波和球对称汇聚压缩的高密度、低温壳层并不适用。针对此类耦合简并等离子体的ICF流体动力学模拟,人们提出了多种热导率模型。最近,这些用于DT等离子体的κ模型的准确性已通过使用量子分子动力学(QMD)方法的第一性原理计算进行了测试;尽管主要针对高密度(ρ>100 g/cm³),但已发现在ICF的峰值压缩条件下,κ存在较大差异。为了涵盖ICF爆聚燃料壳层所经历的广泛密度 - 温度条件范围,我们对ρ = 1.0至673.518 g/cm³的各种氘密度,在T = 5×10³ K至T = 8×10⁶ K的温度范围内进行了κ的QMD计算。所得氘的κQMD用耦合和简并参数Γ和θ的多项式函数拟合,然后可用于流体动力学模拟代码。与我们的流体力学代码lilac目前采用的“混合”斯皮策 - 李 - 莫尔模型相比,使用拟合的κQMD进行的流体动力学模拟显示,对于OMEGA上不同的ICF内爆以及国家点火设施(NIF)的直接驱动点火设计,在预测靶性能方面有高达约20%的变化。内爆壳层的绝热线越低,使用κQMD预测靶性能的变化就越大。此外,κQMD的使用还会改变内爆早期阶段的激波条件和内爆壳层的密度 - 温度分布,这主要影响最终的靶性能。这与之前认为κQMD主要改变ICF内爆热点形成过程中内部烧蚀过程的推测相反。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验