Suppr超能文献

方向选择性循环神经介质的非线性动力学

Nonlinear dynamics of direction-selective recurrent neural media.

作者信息

Xie Xiaohui, Giese Martin A

机构信息

Department of Brain and Cognitive Sciences and Center for Biological and Computational Learning, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051904. doi: 10.1103/PhysRevE.65.051904. Epub 2002 May 3.

Abstract

The direction selectivity of cortical neurons can be accounted for by asymmetric lateral connections. Such lateral connectivity leads to a network dynamics with characteristic properties that can be exploited for distinguishing in neurophysiological experiments this mechanism for direction selectivity from other possible mechanisms. We present a mathematical analysis for a class of direction-selective neural models with asymmetric lateral connections. Contrasting with earlier theoretical studies that have analyzed approximations of the network dynamics by neglecting nonlinearities using methods from linear systems theory, we study the network dynamics with nonlinearity taken into consideration. We show that asymmetrically coupled networks can stabilize stimulus-locked traveling pulse solutions that are appropriate for the modeling of the responses of direction-selective neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the stability of these solutions breaks down, giving rise to lurching activity waves with specific spatiotemporal periodicity. These solutions, and the bifurcation by which they arise, cannot be easily accounted for by classical models for direction selectivity.

摘要

皮层神经元的方向选择性可由不对称的侧向连接来解释。这种侧向连接导致了具有特征属性的网络动力学,这些属性可用于在神经生理学实验中区分这种方向选择性机制与其他可能的机制。我们对一类具有不对称侧向连接的方向选择性神经模型进行了数学分析。与早期的理论研究不同,早期研究通过线性系统理论方法忽略非线性来分析网络动力学的近似值,而我们考虑了非线性来研究网络动力学。我们表明,不对称耦合网络可以稳定适合于对方向选择性神经元反应进行建模的刺激锁定行波脉冲解。此外,我们的分析表明,在一定的刺激速度范围之外,这些解的稳定性会被打破,从而产生具有特定时空周期性的跳跃活动波。这些解以及它们产生的分岔,很难用经典的方向选择性模型来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验