Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
PLoS One. 2007 Aug 15;2(8):e739. doi: 10.1371/journal.pone.0000739.
State transitions in the nervous system often take shape as traveling waves, whereby one neural state is replaced by another across space in a wave-like manner. In visual perception, transitions between the two mutually exclusive percepts that alternate when the two eyes view conflicting stimuli (binocular rivalry) may also take shape as traveling waves. The properties of these waves point to a neural substrate of binocular rivalry alternations that have the hallmark signs of lower cortical areas. In a series of experiments, we show a potent interaction between traveling waves in binocular rivalry and stimulus motion. The course of the traveling wave is biased in the motion direction of the suppressed stimulus that gains dominance by means of the wave-like transition. Thus, stimulus motion may propel the traveling wave across the stimulus to the extent that the stimulus motion dictates the traveling wave's direction completely. Using a computational model, we show that a speed-dependent asymmetry in lateral inhibitory connections between retinotopically organized and motion-sensitive neurons can explain our results. We argue that such a change in suppressive connections may play a vital role in the resolution of dynamic occlusion situations.
神经系统中的状态转换通常呈现为行波形式,即一种神经状态在空间上以波的方式被另一种状态替代。在视觉感知中,当两只眼睛观察到冲突刺激时(双眼竞争),两种相互排斥的知觉之间的转换也可能呈现出行波形式。这些波的特性指向了双眼竞争交替的神经基础,具有皮质下区域的典型特征。在一系列实验中,我们展示了双眼竞争中的行波与刺激运动之间的强烈相互作用。行波的传播方向偏向于通过波状转换获得优势的被抑制刺激的运动方向。因此,刺激运动可以推动行波穿过刺激,以至于刺激运动完全决定行波的方向。使用计算模型,我们表明,视敏度神经元和运动敏感神经元之间的侧抑制连接的速度依赖性不对称性可以解释我们的结果。我们认为,这种抑制性连接的变化可能在动态遮挡情况的解决中发挥重要作用。