Suppr超能文献

二维连续吸引子网络中的稳健工作记忆

Robust working memory in a two-dimensional continuous attractor network.

作者信息

Wojtak Weronika, Coombes Stephen, Avitabile Daniele, Bicho Estela, Erlhagen Wolfram

机构信息

Research Centre of Mathematics, University of Minho, Guimarães, Portugal.

Research Centre Algoritmi, University of Minho, Guimarães, Portugal.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3273-3289. doi: 10.1007/s11571-023-09979-3. Epub 2023 May 29.

Abstract

Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the representational quality of WM items and the recurrent connections within the network require a biologically unrealistic level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence, stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength. Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary at the input position.

摘要

连续脉冲吸引子网络(CANs)在过去已被广泛用于解释工作记忆(WM)任务的现象学,在这些任务中,必须维持连续值信息以指导未来行为。标准的CAN模型存在两个主要局限性:脉冲吸引子的刻板形状不能反映WM项目表征质量的差异,并且网络内的递归连接需要生物学上不现实的精细调谐水平。我们在由两个耦合的阿马里型神经场方程形式化的二维(2D)网络模型中解决了这两个挑战。它将经典CANs的侧向抑制型连接与局部平衡的兴奋性和抑制性反馈回路相结合。我们首先使用径向对称连接来分析表示两个输入维度的联合WM的二维脉冲的存在性、稳定性和分岔结构。为了解决WM内容的质量问题,我们在模型模拟中表明,脉冲幅度反映了针对输入特征的特定组合的自下而上和自上而下证据的时间整合。这包括网络通过在WM维持期间追溯给出的非特定线索将弱输入的稳定亚阈值记忆痕迹转换为高保真记忆表征的能力。为了解决精细调谐问题,我们对连接函数假定的径向对称性的不同扰动进行了数值测试,包括连接强度的随机空间波动。与标准CAN模型的行为不同,脉冲在表征空间中不会漂移,而是在输入位置保持静止。

相似文献

1
Robust working memory in a two-dimensional continuous attractor network.
Cogn Neurodyn. 2024 Dec;18(6):3273-3289. doi: 10.1007/s11571-023-09979-3. Epub 2023 May 29.
4
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
5
Intensive case management for severe mental illness.
Cochrane Database Syst Rev. 2010 Oct 6(10):CD007906. doi: 10.1002/14651858.CD007906.pub2.
6
Carbon dioxide detection for diagnosis of inadvertent respiratory tract placement of enterogastric tubes in children.
Cochrane Database Syst Rev. 2025 Feb 19;2(2):CD011196. doi: 10.1002/14651858.CD011196.pub2.
8
Home telemonitoring and remote feedback between clinic visits for asthma.
Cochrane Database Syst Rev. 2016 Aug 3;2016(8):CD011714. doi: 10.1002/14651858.CD011714.pub2.
9
Psychological interventions for adults who have sexually offended or are at risk of offending.
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD007507. doi: 10.1002/14651858.CD007507.pub2.
10
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.

引用本文的文献

1
The neural computational and dynamical mechanisms of reward-modulated spatial coding in hippocampal place cells.
Cogn Neurodyn. 2025 Dec;19(1):99. doi: 10.1007/s11571-025-10282-6. Epub 2025 Jun 23.

本文引用的文献

1
Distinct Excitatory and Inhibitory Bump Wandering in a Stochastic Neural Field.
SIAM J Appl Dyn Syst. 2022;21(4):2579-2609. doi: 10.1137/22m1482329. Epub 2022 Dec 5.
2
A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code.
Cogn Neurodyn. 2023 Apr;17(2):489-521. doi: 10.1007/s11571-022-09836-9. Epub 2022 Jul 16.
3
Attractor and integrator networks in the brain.
Nat Rev Neurosci. 2022 Dec;23(12):744-766. doi: 10.1038/s41583-022-00642-0. Epub 2022 Nov 3.
4
A dynamic neural field model of continuous input integration.
Biol Cybern. 2021 Oct;115(5):451-471. doi: 10.1007/s00422-021-00893-7. Epub 2021 Aug 21.
5
Visual working memory items drift apart due to active, not passive, maintenance.
J Exp Psychol Gen. 2021 Dec;150(12):2506-2524. doi: 10.1037/xge0000890. Epub 2021 May 20.
6
7
Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory.
PLoS Biol. 2019 Apr 26;17(4):e3000239. doi: 10.1371/journal.pbio.3000239. eCollection 2019 Apr.
8
Oscillations in working memory and neural binding: A mechanism for multiple memories and their interactions.
PLoS Comput Biol. 2018 Nov 12;14(11):e1006517. doi: 10.1371/journal.pcbi.1006517. eCollection 2018 Nov.
9
Neural Evidence for Non-conscious Working Memory.
Cereb Cortex. 2018 Sep 1;28(9):3217-3228. doi: 10.1093/cercor/bhx193.
10
Restoration of fMRI Decodability Does Not Imply Latent Working Memory States.
J Cogn Neurosci. 2017 Dec;29(12):1977-1994. doi: 10.1162/jocn_a_01180. Epub 2017 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验