Suppr超能文献

一种用于体内氢磁共振波谱参数定量分析的小波包分解算法。

A wavelet packets decomposition algorithm for quantification of in vivo (1)H-MRS parameters.

作者信息

Mainardi Luca T, Origgi Daniela, Lucia Pietro, Scotti Giuseppe, Cerutti Sergio

机构信息

Department of Biomedical Engineering, Polytechnic University, Milan, Italy.

出版信息

Med Eng Phys. 2002 Apr;24(3):201-8. doi: 10.1016/s1350-4533(02)00005-x.

Abstract

In this paper a novel method for the extraction of magnetic resonance spectroscopy (MRS) parameters is presented. The method applies the traditional time-domain linear prediction singular value decomposition (LPSVD) on the set of orthonormal sub-signals obtained by wavelet packets (WP) decomposition of the original free induction decay (FID) signal. Using the properties of WP the desired, optimal, sub-band FID decomposition is obtained and used to progressively separate the different metabolic components in distinct sub-bands. A pseudo-optimal WP tree is obtained using the minimum description length (MDL) criteria. The proposed algorithm preserves all the advantages of the traditional LPSVD method, but the WP decomposition considerably improves the LPSVD performances in the presence of noise. The paper addresses this aspect in details by comparing the innovative sub-band and the traditional full-band approaches. Algorithms are tested on simulated signals that mimic real MRS data.

摘要

本文提出了一种提取磁共振波谱(MRS)参数的新方法。该方法将传统的时域线性预测奇异值分解(LPSVD)应用于通过对原始自由感应衰减(FID)信号进行小波包(WP)分解得到的一组正交子信号上。利用小波包的特性获得所需的、最优的子带FID分解,并用于逐步分离不同子带中的不同代谢成分。使用最小描述长度(MDL)准则获得伪最优小波包树。所提出的算法保留了传统LPSVD方法的所有优点,但在存在噪声的情况下,小波包分解显著提高了LPSVD的性能。本文通过比较创新的子带方法和传统的全带方法,详细阐述了这一方面。算法在模拟真实MRS数据的信号上进行了测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验