Huttenrauch Friederike, Nitzki Antje, Lin Fang-Tsyr, Höning Stefan, Oppermann Martin
Department of Immunology, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany.
J Biol Chem. 2002 Aug 23;277(34):30769-77. doi: 10.1074/jbc.M204033200. Epub 2002 Jun 13.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.
激动剂与CC趋化因子受体5(CCR5)结合会诱导位于CCR5 C末端的四个不同丝氨酸残基发生磷酸化。我们建立了一系列克隆的RBL-2H3细胞系,这些细胞系表达带有不同组合的Ser(336)、Ser(337)、Ser(342)和Ser(349)丙氨酸突变的CCR5,并探讨了磷酸化位点对于受体与β-抑制蛋白相互作用以及在配体结合后发生脱敏和内化能力的意义。缺少任意两个磷酸化位点的受体突变体保留了将内源性β-抑制蛋白募集到细胞膜的能力,并能正常被隔离,而任何三个C末端丝氨酸残基的丙氨酸突变则消除了β-抑制蛋白的结合以及激动剂诱导的快速内化。相比之下,RANTES(活化正常T细胞表达和分泌调节因子)对S336A/S349A突变体的刺激引发了持续的钙反应并增强了颗粒酶释放。这种突变分析表明,CCR5内化很大程度上依赖于一种β-抑制蛋白介导的机制,该机制需要存在任意两个磷酸化位点,而受体脱敏则由不同丝氨酸残基的磷酸化独立调节。表面等离子体共振分析进一步表明,纯化的β-抑制蛋白1以相似的亲和力结合磷酸化和未磷酸化的C末端肽段,这表明β-抑制蛋白利用额外的受体位点来区分未活化和活化的受体。表面等离子体共振分析揭示了β-抑制蛋白1与CCR5的第二个细胞内环结合,这需要完整的Asp-Arg-Tyr三联体。这些结果表明,CCR5第二个细胞内环中已知参与G蛋白激活的保守序列基序在β-抑制蛋白与CCR5的结合中起重要作用。