Galán S F, Aguado F, Díez F J, Mira J
Departamento de Inteligencia Artificial, Facultad de Ciencias de la UNED, Paseo senda del rey 9, Madrid 28040, Spain.
Artif Intell Med. 2002 Jul;25(3):247-64. doi: 10.1016/s0933-3657(02)00027-1.
The spread of cancer is a non-deterministic dynamic process. As a consequence, the design of an assistant system for the diagnosis and prognosis of the extent of a cancer should be based on a representation method that deals with both uncertainty and time. The ultimate goal is to know the stage of development of a cancer in a patient before selecting the appropriate treatment. A network of probabilistic events in discrete time (NPEDT) is a type of Bayesian network for temporal reasoning that models the causal mechanisms associated with the time evolution of a process. This paper describes NasoNet, a system that applies NPEDTs to the diagnosis and prognosis of nasopharyngeal cancer. We have made use of temporal noisy gates to model the dynamic causal interactions that take place in the domain. The methodology we describe is general enough to be applied to any other type of cancer.
癌症的扩散是一个非确定性的动态过程。因此,设计一个用于癌症范围诊断和预后的辅助系统应基于一种能够处理不确定性和时间的表示方法。最终目标是在选择合适的治疗方法之前了解患者体内癌症的发展阶段。离散时间概率事件网络(NPEDT)是一种用于时间推理的贝叶斯网络,它对与过程时间演变相关的因果机制进行建模。本文描述了NasoNet,一个将NPEDT应用于鼻咽癌诊断和预后的系统。我们利用时间噪声门来对该领域中发生的动态因果相互作用进行建模。我们所描述的方法具有足够的通用性,可应用于任何其他类型的癌症。