Suppr超能文献

作为生物网络模型的贝叶斯网络的结构学习

Structure learning for Bayesian networks as models of biological networks.

作者信息

Larjo Antti, Shmulevich Ilya, Lähdesmäki Harri

机构信息

Department of Signal Processing, Tampere University of Technology, Tampere, Finland.

出版信息

Methods Mol Biol. 2013;939:35-45. doi: 10.1007/978-1-62703-107-3_4.

Abstract

Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or statistical associations of the underlying system. Bayesian networks have been applied, for example, for inferring the structure of many biological networks from experimental data. We present some recent progress in learning the structure of static and dynamic Bayesian networks from data.

摘要

贝叶斯网络是适用于对多种生物系统进行建模的概率图形模型。在许多情况下,贝叶斯网络的结构代表了基础系统的因果分子机制或统计关联。例如,贝叶斯网络已被应用于从实验数据推断许多生物网络的结构。我们展示了从数据中学习静态和动态贝叶斯网络结构方面的一些最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验