Suppr超能文献

木质部汁液中空化过程的物理分析。

Physical analysis of the process of cavitation in xylem sap.

作者信息

Shen Fanyi, Gao Rongfu, Liu Wenji, Zhang Wenjie

机构信息

College of Basic Sciences and Technique, Beijing Forestry University, Beijing 100083, PR China.

出版信息

Tree Physiol. 2002 Jun;22(9):655-9. doi: 10.1093/treephys/22.9.655.

Abstract

Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 < r2). In each equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl') other than that determined by the formula, Plp' = -2sigma/rp, proposed by Sperry and Tyree (1988), which is applicable only to air-seeded bubbles at s2. The more general formula we propose for calculating the threshold pressure for bubble breaking is consistent with the results of published experiments.

摘要

最近的研究证实,木质部中的空化现象是由气泡引起的。我们分析了附着在导管壁裂缝上的已有气泡以及空气通过纹孔膜孔隙形成气泡(即所谓的空气播种过程)的膨胀情况。我们认为,木质部中非常小的气泡存在两种平衡状态:一种是暂时稳定的,气泡半径为r1,位于将气泡内压力(P)与气泡半径(r)联系起来的曲线P(r)上的s1点;另一种是不稳定的,气泡半径为r2,位于Pr曲线上的s2点(其中r1 < r2)。在每种平衡状态下,气泡的崩溃压力(2σ/r,其中σ是水的表面张力)由其表面的压力差平衡。对于来自导管壁裂缝的气泡,最初位于s1点,随着水势降低,气泡会稳定膨胀。只有当木质部压力降至阈值以下时,气泡才会破裂。提出了一个给出气泡破裂阈值压力的公式。对于通过纹孔膜孔隙进入木质部导管的空气种子,其初始半径可能是Pr曲线上s2点的r2(即空气种子进入导管的孔隙半径)。由于气泡进入导管时处于不稳定平衡状态,它可以膨胀或收缩至s1点。当水在s2点蒸发进入气泡时,P升高,直到超过使气泡保持平衡的气体压力,此时气泡将破裂,并根据空气播种假说引发空化事件。然而,其他可能的扰动可能会使空气播种的气泡收缩至s1点,在这种情况下,气泡将在为从导管壁裂缝膨胀的气泡提出的阈值压力下破裂。因此,一些空化事件可能在不同于Sperry和Tyree(1988)提出的公式Plp'* = -2σ/rp所确定的木质部阈值压力(Pl'*)下发生,该公式仅适用于s2点的空气播种气泡。我们提出的用于计算气泡破裂阈值压力的更通用公式与已发表实验的结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验