Suppr超能文献

一种基于被子植物木质部栓塞修复的微通道生物启发式气泡去除方法。

A bioinspired bubble removal method in microchannels based on angiosperm xylem embolism repair.

作者信息

Guo Lihua, Liu Yuanchang, Ran Penghui, Wang Gang, Shan Jie, Li Xudong, Liu Chong, Li Jingmin

机构信息

Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China.

Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK.

出版信息

Microsyst Nanoeng. 2022 Mar 22;8:34. doi: 10.1038/s41378-022-00367-1. eCollection 2022.

Abstract

It is difficult to remove and eliminate bubbles in microchannels in many devices used in various biomedical fields, such as those needed for microfluidic immunoassays, point-of-care testing, and cell biology evaluations. Accumulated bubbles are associated with a number of negative outcomes, including a decrease in device sensitivity, inaccuracy of analysis results, and even functional failure. Xylem conduits of angiosperm have the ability to remove bubbles in obstructed conduits. Inspired by such an embolism repair mechanism, this paper proposes a bioinspired bubble removal method, which exhibits a prominent ability to dissolve bubbles continuously within a large range of flow rates (2 µL/min-850 µL/min) while retaining the stability and continuity of the flow without auxiliary equipment. Such a method also shows significant bubble removal stability in dealing with Newtonian liquids and non-Newtonian fluids, especially with high viscosity (6.76 Pa s) and low velocity (152 nL/min). Such advantages associated with the proposed bioinspired method reveal promising application prospects in macro/microfluidic fields ranging from 3D printing, implantable devices, virus detection, and biomedical fluid processing to microscale reactor operation and beyond.

摘要

在各种生物医学领域中使用的许多设备的微通道内,去除和消除气泡是很困难的,例如微流控免疫分析、即时检测和细胞生物学评估所需的设备。积累的气泡会带来许多负面结果,包括设备灵敏度降低、分析结果不准确,甚至功能失效。被子植物的木质部导管具有去除受阻导管中气泡的能力。受这种栓塞修复机制的启发,本文提出了一种受生物启发的气泡去除方法,该方法在很宽的流速范围(2 μL/分钟 - 850 μL/分钟)内具有突出的连续溶解气泡的能力,同时在没有辅助设备的情况下保持流动的稳定性和连续性。这种方法在处理牛顿液体和非牛顿流体时,特别是高粘度(6.76 Pa·s)和低流速(152 nL/分钟)的流体时,也表现出显著的气泡去除稳定性。与所提出的受生物启发的方法相关的这些优点揭示了其在从3D打印、可植入设备、病毒检测、生物医学流体处理到微尺度反应器操作及其他领域的宏观/微流控领域中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a698/8940964/8a37840fbc1e/41378_2022_367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验