Deng Hong-Wen, Chen Wei-Min, Recker Robert R
Department of Biomedical Sciences, Creighton University, 601 N. 30th St., Suite 6787, Omaha, NE 68131, USA.
Hum Genet. 2002 May;110(5):451-61. doi: 10.1007/s00439-002-0675-9. Epub 2002 Mar 22.
The transmission disequilibrium test (TDT) has been employed to map disease susceptibility loci (DSL), while being immune to the problem of population admixture. The customary TDT test (TDT(D)) was developed for affected child(ren) and their parents and was most often applied to case-parent trios. Recently, the TDT has been extended to the situations when (1) parents are not available but affected and nonaffected sibs from each family are available, (2) unrelated control-parent trios are available for combined analyses with case-parent trios (TDT(DC)), and (3) large pedigrees. For many diseases, affected children in the case-parent trios enlisted into the TDT(D) have unaffected sibs who can be recruited. We present an extension of the TDT by effectively incorporating one unaffected sib of each of the affected children in the case-parent trios into a single analysis (TDT(DS), where DS denotes discordant sib pairs). We have developed a general analytical method for computing the statistical power of the TDT(DS) under any genetic model, the accuracy of which is validated by computer simulations. We compare the power of the TDT(D), TDT(DC), and TDT(DS) under a range of parameter space and genetic models. We find that the TDT(DS) is generally more powerful than the TDT(DC) and TDT(D), particularly when the disease is prevalent (>30%) in the population. The relative power of the TDT(D) and the TDT(DS) largely depends upon the allele frequencies and genetic effects at the DSL, whereas the recombination rate, the degree of linkage disequilibrium, and the marker allele frequencies have little effect. Importantly, the TDT(DS) not only may be more powerful, it also has the advantage of being able to test for segregation distortion that may yield false linkage/association in the TDT(D).
传递不平衡检验(TDT)已被用于定位疾病易感基因座(DSL),且不受群体混合问题的影响。传统的TDT检验(TDT(D))是为患病儿童及其父母开发的,最常用于病例-父母三联体。最近,TDT已扩展到以下几种情况:(1)无法获得父母,但每个家庭中有患病和未患病的同胞;(2)有无关的对照-父母三联体可与病例-父母三联体进行联合分析(TDT(DC));(3)大家庭。对于许多疾病,纳入TDT(D)的病例-父母三联体中的患病儿童有未患病的同胞可供招募。我们通过有效地将病例-父母三联体中每个患病儿童的一个未患病同胞纳入单一分析,提出了TDT的一种扩展方法(TDT(DS),其中DS表示不一致的同胞对)。我们开发了一种通用的分析方法,用于计算在任何遗传模型下TDT(DS)的统计功效,其准确性通过计算机模拟得到验证。我们在一系列参数空间和遗传模型下比较了TDT(D)、TDT(DC)和TDT(DS)的功效。我们发现,TDT(DS)通常比TDT(DC)和TDT(D)更具功效,特别是当疾病在人群中患病率较高(>30%)时。TDT(D)和TDT(DS)的相对功效在很大程度上取决于DSL处的等位基因频率和遗传效应,而重组率、连锁不平衡程度和标记等位基因频率的影响较小。重要的是,TDT(DS)不仅可能更具功效,它还具有能够检测可能在TDT(D)中产生假连锁/关联的分离畸变的优势。