Suppr超能文献

当病例并非病例时:表型错误分类对受累儿童三联体传递不平衡检验的效能及样本量要求的影响。

When a case is not a case: effects of phenotype misclassification on power and sample size requirements for the transmission disequilibrium test with affected child trios.

作者信息

Buyske Steven, Yang Guang, Matise Tara C, Gordon Derek

机构信息

Department of Genetics, Rutgers University, Piscataway, N.J. 08854, USA.

出版信息

Hum Hered. 2009;67(4):287-92. doi: 10.1159/000194981. Epub 2009 Jan 27.

Abstract

Phenotype misclassification in genetic studies can decrease the power to detect association between a disease locus and a marker locus. To date, studies of misclassification have focused primarily on case-control designs. The purpose of this work is to quantify the effects of phenotype misclassification on the transmission disequilibrium test (TDT) applied to affected child trios, where both parents are genotyped. We compute the non-centrality parameter of the distribution corresponding to the TDT statistic when there is linkage and association of a marker locus with a disease locus and there is phenotype misclassification. We verify our analytic calculations with simulations and provide an example sample size calculation. In our simulation studies, the maximum absolute difference between statistical power computed by simulation and analytic methods is 0.018. In an example sample size calculation, we observe that to maintain equivalent power, the required sample size increases when the disease prevalence decreases or when the misclassification rate increases. A 39-fold sample size increase is required when the misclassification rate is 5% and the disease prevalence is 1%. Given the potentially substantial power loss for the TDT in the presence of misclassification, we recommend that researchers incorporate phenotype misclassification into their study design for genetic association using trio data. We have developed freely available software that computes power loss for a fixed sample size or sample size for a fixed power in the presence of phenotype misclassification.

摘要

在基因研究中,表型错误分类会降低检测疾病基因座与标记基因座之间关联的效能。迄今为止,关于错误分类的研究主要集中在病例对照设计上。这项工作的目的是量化表型错误分类对应用于患病儿童三联体(父母双方均进行基因分型)的传递不平衡检验(TDT)的影响。当标记基因座与疾病基因座存在连锁和关联且存在表型错误分类时,我们计算与TDT统计量相对应的分布的非中心参数。我们通过模拟验证了我们的分析计算,并提供了一个样本量计算示例。在我们的模拟研究中,通过模拟和分析方法计算的统计效能之间的最大绝对差异为0.018。在一个样本量计算示例中,我们观察到,为了保持同等效能,当疾病患病率降低或错误分类率增加时,所需的样本量会增加。当错误分类率为5%且疾病患病率为1%时,样本量需要增加39倍。鉴于在存在错误分类的情况下TDT可能会有相当大的效能损失,我们建议研究人员在使用三联体数据进行基因关联研究设计时纳入表型错误分类因素。我们开发了免费软件,可计算在存在表型错误分类时固定样本量的效能损失或固定效能所需的样本量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验