Suppr超能文献

小鼠中胸苷磷酸化酶和尿苷磷酸化酶的靶向缺失及由此引发的病症

Targeted deletion of both thymidine phosphorylase and uridine phosphorylase and consequent disorders in mice.

作者信息

Haraguchi Misako, Tsujimoto Hiroaki, Fukushima Masakazu, Higuchi Itsuro, Kuribayashi Hideto, Utsumi Hideo, Nakayama Atsuo, Hashizume Yoshio, Hirato Junko, Yoshida Hiroki, Hara Hiromitsu, Hamano Shinjiro, Kawaguchi Hiroaki, Furukawa Tatsuhiko, Miyazono Kohei, Ishikawa Fuyuki, Toyoshima Hideo, Kaname Tadashi, Komatsu Masaharu, Chen Zhe-Sheng, Gotanda Takenari, Tachiwada Tokushi, Sumizawa Tomoyuki, Miyadera Kazutaka, Osame Mitsuhiro, Yoshida Hiroki, Noda Tetsuo, Yamada Yuji, Akiyama Shin-ichi

机构信息

Department of Cancer Chemotherapy, Institute for Cancer Research, Third Department of Internal Medicin, Kagoshima University, 8-35-1 Sakura-gaoka, Kagoshima 890-8520, Japan.

出版信息

Mol Cell Biol. 2002 Jul;22(14):5212-21. doi: 10.1128/MCB.22.14.5212-5221.2002.

Abstract

Thymidine phosphorylase (TP) regulates intracellular and plasma thymidine levels. TP deficiency is hypothesized to (i) increase levels of thymidine in plasma, (ii) lead to mitochondrial DNA alterations, and (iii) cause mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). In order to elucidate the physiological roles of TP, we generated mice deficient in the TP gene. Although TP activity in the liver was inhibited in these mice, it was fully maintained in the small intestine. Murine uridine phosphorylase (UP), unlike human UP, cleaves thymidine, as well as uridine. We therefore generated TP-UP double-knockout (TP(-/-) UP(-/-)) mice. TP activities were inhibited in TP(-/-) UP(-/-) mice, and the level of thymidine in the plasma of TP(-/-) UP(-/-) mice was higher than for TP(-/-) mice. Unexpectedly, we could not observe alterations of mitochondrial DNA or pathological changes in the muscles of the TP(-/-) UP(-/-) mice, even when these mice were fed thymidine for 7 months. However, we did find hyperintense lesions on magnetic resonance T(2) maps in the brain and axonal edema by electron microscopic study of the brain in TP(-/-) UP(-/-) mice. These findings suggested that the inhibition of TP activity caused the elevation of pyrimidine levels in plasma and consequent axonal swelling in the brains of mice. Since lesions in the brain do not appear to be due to mitochondrial alterations and pathological changes in the muscle were not found, this model will provide further insights into the causes of MNGIE.

摘要

胸苷磷酸化酶(TP)调节细胞内和血浆中的胸苷水平。据推测,TP缺乏会(i)增加血浆中胸苷的水平,(ii)导致线粒体DNA改变,以及(iii)引起线粒体神经胃肠性脑肌病(MNGIE)。为了阐明TP的生理作用,我们培育了TP基因缺陷的小鼠。尽管这些小鼠肝脏中的TP活性受到抑制,但在小肠中其活性完全得以维持。与人类尿苷磷酸化酶(UP)不同,小鼠尿苷磷酸化酶既能切割尿苷,也能切割胸苷。因此,我们培育了TP-UP双敲除(TP(-/-) UP(-/-))小鼠。TP(-/-) UP(-/-)小鼠的TP活性受到抑制,且TP(-/-) UP(-/-)小鼠血浆中的胸苷水平高于TP(-/-)小鼠。出乎意料的是,即使给这些小鼠喂食胸苷7个月,我们也未观察到TP(-/-) UP(-/-)小鼠的线粒体DNA改变或肌肉病理变化。然而,通过对TP(-/-) UP(-/-)小鼠大脑进行电子显微镜研究,我们在其大脑的磁共振T(2)图谱上发现了高强度病变以及轴突水肿。这些发现表明,TP活性的抑制导致小鼠血浆中嘧啶水平升高,进而引起大脑轴突肿胀。由于大脑中的病变似乎并非由线粒体改变所致,且未发现肌肉病理变化,该模型将为深入了解MNGIE的病因提供进一步的线索。

相似文献

1
Targeted deletion of both thymidine phosphorylase and uridine phosphorylase and consequent disorders in mice.
Mol Cell Biol. 2002 Jul;22(14):5212-21. doi: 10.1128/MCB.22.14.5212-5221.2002.
2
3
Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice.
Hum Mol Genet. 2009 Feb 15;18(4):714-22. doi: 10.1093/hmg/ddn401. Epub 2008 Nov 21.
5
Thymidine phosphorylase mutations cause instability of mitochondrial DNA.
Gene. 2005 Jul 18;354:152-6. doi: 10.1016/j.gene.2005.04.041.
6
Thymidine phosphorylase gene mutations in patients with mitochondrial neurogastrointestinal encephalomyopathy syndrome.
Mol Genet Metab. 2005 Apr;84(4):326-31. doi: 10.1016/j.ymgme.2004.12.004. Epub 2005 Jan 24.
7
Late-onset MNGIE due to partial loss of thymidine phosphorylase activity.
Ann Neurol. 2005 Oct;58(4):649-52. doi: 10.1002/ana.20615.
8
Thymidine phosphorylase gene mutation is not a primary cause of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).
Intern Med. 2006;45(7):443-6. doi: 10.2169/internalmedicine.45.1371. Epub 2006 May 1.

引用本文的文献

1
2
Thymidine Phosphorylase Imaging Probe for Differential Diagnosis of Metabolic dysfunction-associated Steatohepatitis.
Mol Imaging Biol. 2024 Dec;26(6):1036-1045. doi: 10.1007/s11307-024-01964-4. Epub 2024 Nov 13.
3
Brain organoid as a model to study the role of mitochondria in neurodevelopmental disorders: achievements and weaknesses.
Front Cell Neurosci. 2024 Jun 24;18:1403734. doi: 10.3389/fncel.2024.1403734. eCollection 2024.
4
Animal Models of Mitochondrial Diseases Associated with Nuclear Gene Mutations.
Acta Naturae. 2023 Oct-Dec;15(4):4-22. doi: 10.32607/actanaturae.25442.
6
Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far.
Front Genet. 2018 Dec 21;9:669. doi: 10.3389/fgene.2018.00669. eCollection 2018.
7
Capecitabine reverses tumor escape from anti-VEGF through the eliminating CD11b/Gr1 myeloid cells.
Oncotarget. 2018 Apr 3;9(25):17620-17630. doi: 10.18632/oncotarget.24811.
8
Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems.
Annu Rev Pathol. 2018 Jan 24;13:163-191. doi: 10.1146/annurev-pathol-020117-043644. Epub 2017 Nov 3.
10
Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations.
Biochem J. 2016 Oct 15;473(20):3463-3485. doi: 10.1042/BCJ20160594. Epub 2016 Aug 5.

本文引用的文献

1
MNGIE: from nuclear DNA to mitochondrial DNA.
Neuromuscul Disord. 2001 Jan;11(1):7-10. doi: 10.1016/s0960-8966(00)00159-0.
3
Defects of intergenomic communication: where do we stand?
Brain Pathol. 2000 Jul;10(3):451-61. doi: 10.1111/j.1750-3639.2000.tb00277.x.
4
A human SCO2 mutation helps define the role of Sco1p in the cytochrome oxidase assembly pathway.
J Biol Chem. 2000 Sep 1;275(35):26780-5. doi: 10.1074/jbc.M004032200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验