Burian S J, Brown M J, McPherson T N
Department of Civil Engineering, University of Arkansas, Fayetteville 72701, USA.
Water Sci Technol. 2002;45(9):269-76.
Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.
土地利用/土地覆盖(LULC)数据是面源污染建模的重要组成部分。大多数流域水文和污染物负荷模型在某种程度上使用LULC信息来生成径流和污染物负荷估计值。简单方程法使用通常与LULC类型相关的径流系数或污染物输出系数来预测径流和污染物负荷。复杂模型使用输入变量和参数来表示流域特征以及作为LULC类型函数的污染物累积和冲刷速率。无论使用简单模型还是复杂模型,拥有合适空间分辨率和详细程度的准确LULC数据集对于可靠的预测至关重要。本文提出的研究比较和评估了几种用于城市环境建模的LULC数据集来源。常用的美国地质调查局(USGS)LULC数据集的空间分辨率比其他LULC数据集更粗,分类级别更低。此外,USGS数据集不能准确反映在过去二十年中经历了重大土地利用变化地区的土地利用情况。我们对美国加利福尼亚州洛杉矶的三个城市集水区进行了流域建模分析,以研究使用USGS LULC数据集与使用更详细和最新的LULC数据集时年平均径流量和总悬浮固体(TSS)负荷的相对差异。当将这两个LULC数据集汇总到相同的土地利用类别时,三个集水区预测的年平均径流量和TSS负荷的相对差异分别为8%至14%和13%至40%。相对差异与集水区大小没有可预测的关系。