Suppr超能文献

集群大小分布:空间生态学中自组织的特征

Cluster size distributions: signatures of self-organization in spatial ecologies.

作者信息

Pascual Mercedes, Roy Manojit, Guichard Frédéric, Flierl Glenn

机构信息

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor 48109-1048, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):657-66. doi: 10.1098/rstb.2001.0983.

Abstract

Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic, exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions and perimeter-area curves follow power-law scalings. In the coexistence regime, these patterns are robust: their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend only weakly on the parameters of the systems. These distributions, in particular the values of their exponents, are close to those reported in the literature for systems associated with self-organized criticality (SOC) such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demonstrate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes of growth and inhibition in space, such as those in predator-prey and disturbance-recovery dynamics. Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions, would therefore require spatial forcing by environmental variability.

摘要

三种基于格点的非线性随机拮抗生态相互作用模型,在簇的几何结构中呈现出相似的幂律标度。具体而言,簇大小分布和周长-面积曲线遵循幂律标度。在共存状态下,这些模式是稳健的:它们的指数,以及因此表征斑块性的相关科尔恰克指数,仅微弱地依赖于系统参数。这些分布,特别是它们指数的值,与文献中报道的与自组织临界性(SOC)相关的系统(如森林火灾模型)的值相近;然而,SOC的典型假设不一定适用。我们的结果表明,簇大小分布中的幂律标度并不局限于具有明显时间尺度分离的拮抗相互作用系统。这些模式是空间中生长和抑制过程的特征,例如捕食者-猎物和干扰-恢复动态中的过程。因此,这些模式的反转,即如浮游生物分布所描述的具有正斜率的标度,将需要环境变异性的空间强迫。

相似文献

1
Cluster size distributions: signatures of self-organization in spatial ecologies.
Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):657-66. doi: 10.1098/rstb.2001.0983.
2
Criticality and disturbance in spatial ecological systems.
Trends Ecol Evol. 2005 Feb;20(2):88-95. doi: 10.1016/j.tree.2004.11.012. Epub 2004 Dec 2.
3
Emergence of power-law distributions in self-segregation reaction-diffusion processes.
Phys Rev E. 2024 Jul;110(1):L012201. doi: 10.1103/PhysRevE.110.L012201.
4
Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions.
Am Nat. 2003 Jun;161(6):889-904. doi: 10.1086/375300. Epub 2003 Jun 10.
5
Understanding shifts in wildfire regimes as emergent threshold phenomena.
Am Nat. 2011 Dec;178(6):E149-61. doi: 10.1086/662675. Epub 2011 Oct 28.
6
Stability and distribution of predator-prey systems: local and regional mechanisms and patterns.
Ecol Lett. 2016 Mar;19(3):279-88. doi: 10.1111/ele.12565. Epub 2016 Jan 12.
7
Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution.
J Math Biol. 2007 Nov;55(5-6):653-77. doi: 10.1007/s00285-007-0101-y. Epub 2007 May 30.
8
The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes.
Science. 2015 Sep 4;349(6252):aac6284. doi: 10.1126/science.aac6284. Epub 2015 Sep 3.

引用本文的文献

1
Community plant height modulated by aridity promotes spatial vegetation patterns in Alxa plateau in Northwest China.
Ecol Evol. 2023 Feb 14;13(2):e9823. doi: 10.1002/ece3.9823. eCollection 2023 Feb.
2
The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning.
Proc Biol Sci. 2019 Apr 10;286(1900):20182859. doi: 10.1098/rspb.2018.2859.
3
Fractal measures of spatial pattern as a heuristic for return rate in vegetative systems.
R Soc Open Sci. 2016 Mar 30;3(3):150519. doi: 10.1098/rsos.150519. eCollection 2016 Mar.
4
Regulatory mechanisms of group distributions in a gregarious arthropod.
R Soc Open Sci. 2015 Nov 25;2(11):150428. doi: 10.1098/rsos.150428. eCollection 2015 Nov.
5
Simple models for complex systems: exploiting the relationship between local and global densities.
Theor Ecol. 2011;4(2):211-222. doi: 10.1007/s12080-011-0116-2. Epub 2011 Mar 11.
6
Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics.
PLoS One. 2014 May 19;9(5):e97809. doi: 10.1371/journal.pone.0097809. eCollection 2014.
7
Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6296-300. doi: 10.1073/pnas.1302558110. Epub 2013 Apr 1.
8
Hydroperiod regime controls the organization of plant species in wetlands.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19596-600. doi: 10.1073/pnas.1218056109. Epub 2012 Nov 13.
9
Recurrent, robust and scalable patterns underlie human approach and avoidance.
PLoS One. 2010 May 26;5(5):e10613. doi: 10.1371/journal.pone.0010613.
10
Comparable ecological dynamics underlie early cancer invasion and species dispersal, involving self-organizing processes.
J Theor Biol. 2009 Jan 7;256(1):65-75. doi: 10.1016/j.jtbi.2008.09.011. Epub 2008 Oct 1.

本文引用的文献

1
Isolation of succinic dehydrogenase from beef heart mitochondria.
Biochim Biophys Acta. 1954 Jun;14(2):295-6. doi: 10.1016/0006-3002(54)90180-8.
2
Exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt A):5293-300. doi: 10.1103/physreve.60.5293.
3
Lessons on pattern formation from planet WATOR.
J Theor Biol. 2000 Jul 21;205(2):201-14. doi: 10.1006/jtbi.2000.2061.
4
Environmental colour affects aspects of single-species population dynamics.
Proc Biol Sci. 2000 Apr 22;267(1445):747-54. doi: 10.1098/rspb.2000.1066.
5
Self-organized critical forest-fire model.
Phys Rev Lett. 1992 Sep 14;69(11):1629-1632. doi: 10.1103/PhysRevLett.69.1629.
6
Self-similarity in rain forests: Evidence for a critical state.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jun;51(6):6250-6253. doi: 10.1103/physreve.51.6250.
7
Self-organized criticality.
Phys Rev A Gen Phys. 1988 Jul 1;38(1):364-374. doi: 10.1103/physreva.38.364.
8
Forest fires: An example of self-organized critical behavior.
Science. 1998 Sep 18;281(5384):1840-2. doi: 10.1126/science.281.5384.1840.
9
On the critical behaviour of simple epidemics.
Proc Biol Sci. 1997 Nov 22;264(1388):1639-46. doi: 10.1098/rspb.1997.0228.
10
Population dynamics and the colour of environmental noise.
Proc Biol Sci. 1997 Jul 22;264(1384):943-8. doi: 10.1098/rspb.1997.0130.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验