Suppr超能文献

用布朗动力学对多种钾通道进行建模。

Modeling diverse range of potassium channels with Brownian dynamics.

作者信息

Chung Shin-Ho, Allen Toby W, Kuyucak Serdar

机构信息

Department of Physics, The Faculty of Sciences, Australian National University, Canberra, ACT 0200, Australia.

出版信息

Biophys J. 2002 Jul;83(1):263-77. doi: 10.1016/S0006-3495(02)75167-9.

Abstract

Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general.

摘要

以通过实验确定的KcsA结构为模板,我们对自然界中钾通道的多样性提出了一个合理的解释。通过平滑蛋白质 - 水边界,并将构成通道蛋白的原子表示为均匀的低介电介质,从其原子分辨率结构构建了一个简化的KcsA模型。从静电计算和布朗动力学模拟推导得出的简化模型和原子细节模型的性质在定性上是相似的。然后,我们研究了当孔内区域的形状被修改时,流过简化模型通道的电流如何变化。这是通过将细胞内孔的半径从1.5埃系统地增加到5埃来实现的,同时保持选择性过滤器和内腔的尺寸不变。位于通道入口附近的偶极子、排列在选择性过滤器内的羰基以及螺旋大偶极子的强度保持恒定。随着细胞内孔半径的增加,通道电导稳步增加。向外和向内电流的限速步骤是离子穿过位于孔内区域的剩余能垒所需的时间。当施加的电位小于约100 mV时,用对称溶液获得的电流 - 电压关系是线性的,但在较高的施加电位下略微偏离欧姆定律。随着细胞内孔半径的增加,电流 - 电压曲线中的非线性变得不那么明显。当细胞内入口附近的偶极子强度降低时,通道表现出明显的内向整流。最后,电导表现出实验观察到的饱和特性。我们讨论了这些发现对离子跨钾通道和一般膜通道运输的影响。

相似文献

1
Modeling diverse range of potassium channels with Brownian dynamics.
Biophys J. 2002 Jul;83(1):263-77. doi: 10.1016/S0006-3495(02)75167-9.
2
Permeation of ions across the potassium channel: Brownian dynamics studies.
Biophys J. 1999 Nov;77(5):2517-33. doi: 10.1016/S0006-3495(99)77087-6.
4
Study of ionic currents across a model membrane channel using Brownian dynamics.
Biophys J. 1998 Aug;75(2):793-809. doi: 10.1016/S0006-3495(98)77569-1.
5
Hierarchical approach to predicting permeation in ion channels.
Biophys J. 2001 Nov;81(5):2473-83. doi: 10.1016/S0006-3495(01)75893-6.
6
Potassium ions in the cavity of a KcsA channel model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062712. doi: 10.1103/PhysRevE.88.062712. Epub 2013 Dec 13.
7
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
8
Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
Biophys J. 2000 Jun;78(6):2900-17. doi: 10.1016/S0006-3495(00)76831-7.
9
Permeation in potassium channels: implications for channel structure.
Annu Rev Biophys Biophys Chem. 1987;16:227-46. doi: 10.1146/annurev.bb.16.060187.001303.
10
Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061908. doi: 10.1103/PhysRevE.68.061908. Epub 2003 Dec 18.

引用本文的文献

1
Molecular dynamics simulations of membrane proteins.
Biophys Rev. 2012 Sep;4(3):271-282. doi: 10.1007/s12551-012-0084-9. Epub 2012 Sep 1.
2
Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge.
Front Physiol. 2017 Apr 6;8:206. doi: 10.3389/fphys.2017.00206. eCollection 2017.
3
Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels.
J Phys Chem B. 2017 Apr 20;121(15):3607-3619. doi: 10.1021/acs.jpcb.6b09598. Epub 2016 Dec 12.
4
Binding of fullerenes and nanotubes to MscL.
Sci Rep. 2014 Jul 17;4:5609. doi: 10.1038/srep05609.
5
Non-equilibrium dynamics contribute to ion selectivity in the KcsA channel.
PLoS One. 2014 Jan 17;9(1):e86079. doi: 10.1371/journal.pone.0086079. eCollection 2014.
6
Multi-ion versus single-ion conduction mechanisms can yield current rectification in biological ion channels.
J Biol Phys. 2014 Mar;40(2):109-19. doi: 10.1007/s10867-013-9338-4. Epub 2014 Jan 26.
8
Physics of ion channels.
J Biol Phys. 2003 Dec;29(4):429-46. doi: 10.1023/A:1027309113522.
9
Permeation and block of the Kv1.2 channel examined using brownian and molecular dynamics.
Biophys J. 2011 Dec 7;101(11):2671-8. doi: 10.1016/j.bpj.2011.10.045.
10
Modeling the binding of three toxins to the voltage-gated potassium channel (Kv1.3).
Biophys J. 2011 Dec 7;101(11):2652-60. doi: 10.1016/j.bpj.2011.10.029.

本文引用的文献

1
Simulation approaches to ion channel structure-function relationships.
Q Rev Biophys. 2001 Nov;34(4):473-561. doi: 10.1017/s0033583501003729.
3
Brownian dynamics study of an open-state KcsA potassium channel.
Biochim Biophys Acta. 2001 Dec 1;1515(2):83-91. doi: 10.1016/s0005-2736(01)00395-9.
4
Energetics of ion conduction through the K+ channel.
Nature. 2001 Nov 1;414(6859):73-7. doi: 10.1038/35102067.
6
Energetic optimization of ion conduction rate by the K+ selectivity filter.
Nature. 2001 Nov 1;414(6859):37-42. doi: 10.1038/35102000.
7
Ion conduction pore is conserved among potassium channels.
Nature. 2001 Oct 25;413(6858):809-13. doi: 10.1038/35101535.
8
Hierarchical approach to predicting permeation in ion channels.
Biophys J. 2001 Nov;81(5):2473-83. doi: 10.1016/S0006-3495(01)75893-6.
10
Structure of the KcsA channel intracellular gate in the open state.
Nat Struct Biol. 2001 Oct;8(10):883-7. doi: 10.1038/nsb1001-883.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验