Suppr超能文献

利用布朗动力学对跨模型膜通道的离子电流进行研究。

Study of ionic currents across a model membrane channel using Brownian dynamics.

作者信息

Chung S H, Hoyles M, Allen T, Kuyucak S

机构信息

Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, A.C.T. 0200, Australia.

出版信息

Biophys J. 1998 Aug;75(2):793-809. doi: 10.1016/S0006-3495(98)77569-1.

Abstract

Brownian dynamics simulations have been carried out to study ionic currents flowing across a model membrane channel under various conditions. The model channel we use has a cylindrical transmembrane segment that is joined to a catenary vestibule at each side. Two cylindrical reservoirs connected to the channel contain a fixed number of sodium and chloride ions. Under a driving force of 100 mV, the channel is virtually impermeable to sodium ions, owing to the repulsive dielectric force presented to ions by the vestibular wall. When two rings of dipoles, with their negative poles facing the pore lumen, are placed just above and below the constricted channel segment, sodium ions cross the channel. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength does not increase the channel conductance further. When only those ions that acquire a kinetic energy large enough to surmount a barrier are allowed to enter the narrow transmembrane segment, the channel conductance decreases monotonically with the barrier height. This barrier represents those interactions between an ion, water molecules, and the protein wall in the transmembrane segment that are not treated explicitly in the simulation. The conductance obtained from simulations closely matches that obtained from ACh channels when a step potential barrier of 2-3 kTr is placed at the channel neck. The current-voltage relationship obtained with symmetrical solutions is ohmic in the absence of a barrier. The current-voltage curve becomes nonlinear when the 3 kTr barrier is in place. With asymmetrical solutions, the relationship approximates the Goldman equation, with the reversal potential close to that predicted by the Nernst equation. The conductance first increases linearly with concentration and then begins to rise at a slower rate with higher ionic concentration. We discuss the implications of these findings for the transport of ions across the membrane and the structure of ion channels.

摘要

已进行布朗动力学模拟,以研究在各种条件下跨模型膜通道流动的离子电流。我们使用的模型通道有一个圆柱形跨膜段,其两侧连接到悬链前庭。与通道相连的两个圆柱形储液器含有固定数量的钠离子和氯离子。在100 mV的驱动力下,由于前庭壁对离子呈现的排斥介电力,通道实际上对钠离子不可渗透。当两圈偶极子,其负极面向孔腔,放置在收缩通道段的上方和下方时,钠离子穿过通道。电导率随着偶极子强度的增加而增加,并迅速达到最大值;偶极子强度的进一步增加不会进一步增加通道电导率。当仅允许那些获得足够大动能以克服势垒的离子进入狭窄的跨膜段时,通道电导率随势垒高度单调降低。这个势垒代表了模拟中未明确处理的离子、水分子与跨膜段蛋白质壁之间的相互作用。当在通道颈部放置2 - 3 kTr的阶跃势垒时,模拟得到的电导率与从乙酰胆碱通道获得的电导率紧密匹配。在没有势垒的情况下,对称溶液得到的电流 - 电压关系是欧姆性的。当3 kTr势垒存在时,电流 - 电压曲线变为非线性。对于不对称溶液,该关系近似于戈德曼方程,反转电位接近能斯特方程预测的值。电导率首先随浓度线性增加,然后随着离子浓度升高开始以较慢速率上升。我们讨论了这些发现对离子跨膜运输和离子通道结构的影响。

相似文献

1
Study of ionic currents across a model membrane channel using Brownian dynamics.
Biophys J. 1998 Aug;75(2):793-809. doi: 10.1016/S0006-3495(98)77569-1.
2
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
3
Permeation of ions across the potassium channel: Brownian dynamics studies.
Biophys J. 1999 Nov;77(5):2517-33. doi: 10.1016/S0006-3495(99)77087-6.
4
Energy barrier presented to ions by the vestibule of the biological membrane channel.
Biophys J. 1996 Apr;70(4):1628-42. doi: 10.1016/S0006-3495(96)79726-6.
5
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051912. doi: 10.1103/PhysRevE.70.051912. Epub 2004 Nov 23.
6
Modeling diverse range of potassium channels with Brownian dynamics.
Biophys J. 2002 Jul;83(1):263-77. doi: 10.1016/S0006-3495(02)75167-9.
8
Analytical solutions of Poisson's equation for realistic geometrical shapes of membrane ion channels.
Biophys J. 1998 Jan;74(1):22-36. doi: 10.1016/S0006-3495(98)77763-X.
9
An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
Biophys J. 2006 Feb 1;90(3):799-810. doi: 10.1529/biophysj.105.067868. Epub 2005 Nov 11.
10
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.

引用本文的文献

1
Experimental and Theoretical Brownian Dynamics Analysis of Ion Transport During Cellular Electroporation of E. coli Bacteria.
Ann Biomed Eng. 2024 Jan;52(1):103-123. doi: 10.1007/s10439-023-03353-4. Epub 2023 Aug 31.
2
Simulating Current-Voltage Relationships for a Narrow Ion Channel Using the Weighted Ensemble Method.
J Chem Theory Comput. 2015 Apr 14;11(4):1907-18. doi: 10.1021/ct501134s.
3
DNA stretching and optimization of nucleobase recognition in enzymatic nanopore sequencing.
Nanotechnology. 2015 Feb 27;26(8):084002. doi: 10.1088/0957-4484/26/8/084002. Epub 2015 Feb 3.
4
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
5
Permeation models and structure-function relationships in ion channels.
J Biol Phys. 2002 Jun;28(2):289-308. doi: 10.1023/A:1019939900568.
8
Simulation of charge transport in ion channels and nanopores with anisotropic permittivity.
J Comput Electron. 2009 Jun 1;8(2):98-109. doi: 10.1007/s10825-009-0272-4.
9
Single-channel current through nicotinic receptor produced by closure of binding site C-loop.
Biophys J. 2009 May 6;96(9):3582-90. doi: 10.1016/j.bpj.2009.02.020.
10
Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies.
Biophys J. 2008 Aug;95(4):1600-11. doi: 10.1529/biophysj.107.126722. Epub 2008 May 2.

本文引用的文献

1
Brownian dynamics study of ion transport in the vestibule of membrane channels.
Biophys J. 1998 Jan;74(1):37-47. doi: 10.1016/S0006-3495(98)77764-1.
2
Analytical solutions of Poisson's equation for realistic geometrical shapes of membrane ion channels.
Biophys J. 1998 Jan;74(1):22-36. doi: 10.1016/S0006-3495(98)77763-X.
3
The dielectric properties of water within model transbilayer pores.
Biophys J. 1997 Nov;73(5):2404-15. doi: 10.1016/S0006-3495(97)78269-9.
5
Water in channel-like cavities: structure and dynamics.
Biophys J. 1996 Feb;70(2):693-702. doi: 10.1016/S0006-3495(96)79609-1.
6
Energy barrier presented to ions by the vestibule of the biological membrane channel.
Biophys J. 1996 Apr;70(4):1628-42. doi: 10.1016/S0006-3495(96)79726-6.
7
The nature of ion and water barrier crossings in a simulated ion channel.
Biophys J. 1993 Jan;64(1):98-109. doi: 10.1016/S0006-3495(93)81344-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验