Suppr超能文献

磁共振成像速度测量与U形弯管内计算流体动力学耦合的验证

Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.

作者信息

Glor F P, Westenberg J J M, Vierendeels J, Danilouchkine M, Verdonck P

机构信息

Hydraulics Laboratory, Institute of Biomedical Technology, Ghent University, Ghent, Belgium.

出版信息

Artif Organs. 2002 Jul;26(7):622-35. doi: 10.1046/j.1525-1594.2002.07085.x.

Abstract

Magnetic resonance imaging (MRI) can be used in vivo in combination with computational fluid dynamics (CFD) to derive velocity profiles in space and time and accordingly, pressure drop and wall shear stress distribution in natural or artificial vessel segments. These hemodynamic data are difficult or impossible to acquire directly in vivo. Therefore, research has been performed combining MRI and CFD for flow simulations in flow phantoms, such as bends or anastomoses, and even in human vessels such as the aorta, the carotid, and the abdominal bifurcation. There is, however, no unanimity concerning the use of MRI velocity measurements as input for the inflow boundary condition of a CFD simulation. In this study, different input possibilities for the inflow boundary conditions are compared. MRI measurements of steady and pulsatile flow were performed on a U bend phantom, representing the aorta geometry. PAMFLOW (ESI Software, Krimpen aan den Ussel, The Netherlands), an industrial CFD software package, was used to solve the Navier-Stokes equations for incompressible flow. Three main parameters were found to influence the choice of an inflow boundary condition type. First, the flow rate through a vessel should be exact, since it proves to be a determining factor for the accuracy of the velocity profile. The other decisive parameters are the physiology of the flow profile and the required computer processing unit time. Our comparative study indicates that the best way to handle an inflow boundary condition is to use the velocities measured by MRI at the inflow plane as being fixed velocities. However, before using these MRI velocity data, they first should be corrected for the partial volume effect by filtering and second scaled in order to obtain the correct flow rate. This implies that a reliable flow rate measurement absolutely is needed for CFD calculations based on MRI velocity measurements.

摘要

磁共振成像(MRI)可在体内与计算流体动力学(CFD)结合使用,以得出空间和时间上的速度分布,并据此得出天然或人造血管段中的压降和壁面剪应力分布。这些血流动力学数据很难或无法在体内直接获取。因此,已经开展了将MRI和CFD相结合的研究,用于在流动模型(如弯头或吻合处)甚至人体血管(如主动脉、颈动脉和腹部分叉处)中进行流动模拟。然而,对于将MRI速度测量值用作CFD模拟流入边界条件的输入,目前尚无统一意见。在本研究中,对流入边界条件的不同输入可能性进行了比较。在代表主动脉几何形状的U形弯管模型上进行了稳定流和脉动流的MRI测量。使用工业CFD软件包PAMFLOW(ESI Software,荷兰克林彭安登乌塞尔)求解不可压缩流的纳维-斯托克斯方程。发现有三个主要参数会影响流入边界条件类型的选择。首先,通过血管的流速应该精确,因为它被证明是速度分布精度的决定性因素。其他决定性参数是流动分布的生理学特性和所需的计算机处理单元时间。我们的比较研究表明,处理流入边界条件的最佳方法是将MRI在流入平面处测得的速度用作固定速度。然而,在使用这些MRI速度数据之前,首先应通过滤波对其进行部分体积效应校正,其次进行缩放以获得正确的流速。这意味着基于MRI速度测量进行CFD计算绝对需要可靠的流速测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验