Ippolito Danielle L, Temkin Paul A, Rogalski Sherri L, Chavkin Charles
Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280, USA.
J Biol Chem. 2002 Sep 6;277(36):32692-6. doi: 10.1074/jbc.M204407200. Epub 2002 Jun 24.
trkB activation results in tyrosine phosphorylation of N-terminal Kir3 residues, decreasing channel activation. To determine the mechanism of this effect, we reconstituted Kir3, trkB, and the mu opioid receptor in Xenopus oocytes. Activation of trkB by BDNF (brain-derived neurotrophic factor) accelerated Kir3 deactivation following termination of mu opioid receptor signaling. Similarly, overexpression of RGS4, a GTPase-activating protein (GAP), accelerated Kir3 deactivation. Blocking GTPase activity with GTPgammaS also prevented Kir3 deactivation, and the GTPgammaS effect was not reversed by BDNF treatment. These results suggest that BDNF treatment did not reduce Kir3 affinity for Gbetagamma but rather acted to accelerate GTPase activity, like RGS4. Tyrosine phosphatase inhibition by peroxyvanadate pretreatment reversibly mimicked the BDNF/trkB effect, indicating that tyrosine phosphorylation of Kir3 may have caused the GTPase acceleration. Tyrosine to phenylalanine substitution in the N-terminal domain of Kir3.4 blocked the BDNF effect, supporting the hypothesis that phosphorylation of these tyrosines was responsible. Like other GAPs, Kir3.4 contains a tyrosine-arginine-glutamine motif that is thought to function by interacting with G protein catalytic domains to facilitate GTP hydrolysis. These data suggest that the N-terminal tyrosine hydroxyls in Kir3 normally mask the GAP activity and that modification by phosphorylation or phenylalanine substitution reveals the GAP domain. Thus, BDNF activation of trkB could inhibit Kir3 by facilitating channel deactivation.
TrkB激活导致N端Kir3残基的酪氨酸磷酸化,从而降低通道激活。为了确定这种效应的机制,我们在非洲爪蟾卵母细胞中重组了Kir3、TrkB和μ阿片受体。脑源性神经营养因子(BDNF)激活TrkB加速了μ阿片受体信号终止后Kir3的失活。同样,GTPase激活蛋白(GAP)RGS4的过表达也加速了Kir3的失活。用GTPγS阻断GTPase活性也可防止Kir3失活,且BDNF处理不能逆转GTPγS的作用。这些结果表明,BDNF处理并未降低Kir3对Gβγ的亲和力,而是像RGS4一样,起到加速GTPase活性的作用。过氧钒酸盐预处理抑制酪氨酸磷酸酶可可逆地模拟BDNF/TrkB的作用,表明Kir3的酪氨酸磷酸化可能导致了GTPase加速。Kir3.4 N端结构域中的酪氨酸突变为苯丙氨酸可阻断BDNF的作用,支持了这些酪氨酸的磷酸化起作用的假说。与其他GAP一样,Kir3.4含有酪氨酸-精氨酸-谷氨酰胺基序,该基序被认为通过与G蛋白催化结构域相互作用来促进GTP水解。这些数据表明,Kir3中的N端酪氨酸羟基通常掩盖了GAP活性,而磷酸化或苯丙氨酸替代修饰则揭示了GAP结构域。因此,TrkB的BDNF激活可通过促进通道失活来抑制Kir3。