Zubieta Chloe, Kota Parvathi, Ferrer Jean-Luc, Dixon Richard A, Noel Joseph P
Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Plant Cell. 2002 Jun;14(6):1265-77. doi: 10.1105/tpc.001412.
Caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase (COMT) from alfalfa is an S-adenosyl-L-Met-dependent O-methyltransferase involved in lignin biosynthesis. COMT methylates caffeoyl- and 5-hydroxyferuloyl-containing acids, aldehydes, and alcohols in vitro while displaying a kinetic preference for the alcohols and aldehydes over the free acids. The 2.2-A crystal structure of COMT in complex with S-adenosyl-L-homocysteine (SAH) and ferulic acid (ferulate form), as well as the 2.4-A crystal structure of COMT in complex with SAH and 5-hydroxyconiferaldehyde, provide a structural understanding of the observed substrate preferences. These crystal structures identify residues lining the active site surface that contact the substrates. Structurally guided site-directed mutagenesis of active site residues was performed with the goal of altering the kinetic preferences for physiological substrates. The kinetic parameters of the COMT mutants versus wild-type enzyme are presented, and coupled with the high-resolution crystal structures, they will serve as a starting point for the in vivo manipulation of lignin monomers in transgenic plants. Ultimately, this structurally based approach to metabolic engineering will allow the further alteration of the lignin biosynthetic pathway in agronomically important plants. This approach will lead to a better understanding of the in vivo operation of the potential metabolic grid for monolignol biosynthesis.
来自苜蓿的咖啡酸/5-羟基阿魏酸3/5-O-甲基转移酶(COMT)是一种依赖S-腺苷-L-蛋氨酸的O-甲基转移酶,参与木质素生物合成。COMT在体外可使含咖啡酰和5-羟基阿魏酰的酸、醛和醇甲基化,同时对醇和醛的动力学偏好高于游离酸。与S-腺苷-L-高半胱氨酸(SAH)和阿魏酸(阿魏酸形式)复合物的COMT的2.2埃晶体结构,以及与SAH和5-羟基松柏醛复合物的COMT的2.4埃晶体结构,为观察到的底物偏好提供了结构上的理解。这些晶体结构确定了活性位点表面与底物接触的残基。对活性位点残基进行了结构导向的定点诱变,目的是改变对生理底物的动力学偏好。给出了COMT突变体与野生型酶的动力学参数,并结合高分辨率晶体结构,它们将作为转基因植物中木质素单体体内操作的起点。最终,这种基于结构的代谢工程方法将使重要农作物中木质素生物合成途径得到进一步改变。这种方法将有助于更好地理解木质素生物合成潜在代谢网络的体内运作。