Suppr超能文献

拟南芥发育中的种子将不同矿物质储存在两种类型的液泡和内质网中。

Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum.

作者信息

Otegui Marisa S, Capp Roberta, Staehelin L Andrew

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.

出版信息

Plant Cell. 2002 Jun;14(6):1311-27. doi: 10.1105/tpc.010486.

Abstract

Mineral-accumulating compartments in developing seeds of Arabidopsis were studied using high-pressure-frozen/freeze-substituted samples. Developing seeds store minerals in three locations: in the protein storage vacuoles of the embryo, and transiently in the endoplasmic reticulum (ER) and vacuolar compartments of the chalazal endosperm. Energy dispersive x-ray spectroscopy and enzyme treatments suggest that the minerals are stored as phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) salts in all three compartments, although they differ in cation composition. Whereas embryo globoids contain Mg, K, and Ca as cations, the chalazal ER deposits show high levels of Mn, and the chalazal vacuolar deposits show high levels of Zn. The appearance of the first Zn-phytate crystals coincides with the formation of network-like extensions of the chalazal vacuoles. The core of these networks consists of a branched network of tubular ER membranes, which are separated from the delineating tonoplast membranes by a layer of cytosolic material. Degradation of the networks starts with the loss of the cytosol and is followed by the retraction of the ER, generating a network of collapsed tonoplast membranes that are resorbed. Studies of fertilized fis2 seeds, which hyperaccumulate Zn-phytate crystals in the chalazal vacuolar compartments, suggest that only the intact network is active in mineral sequestration. Mineral determination analysis and structural observations showed that Zn and Mn are mobilized from the endosperm to the embryo at different developmental stages. Thus, Zn appears to be removed from the endosperm at the late globular stage, and Mn stores appear to be removed at the late bent-cotyledon stage of embryo development. The disappearance of the Mn-phytate from the endosperm coincides with the accumulation of two major Mn binding proteins in the embryo, the 33-kD protein from the oxygen-evolving complex of photosystem II and the Mn superoxide dismutase. The possible functions of transient heavy metal storage in the chalazal endosperm are discussed. A model showing how phytic acid, a potentially cytotoxic molecule, is transported from its site of synthesis, the ER, to the different mineral storage sites is presented.

摘要

利用高压冷冻/冷冻置换样品研究了拟南芥发育种子中的矿物积累区室。发育中的种子在三个位置储存矿物质:在胚的蛋白质储存液泡中,以及短暂地在内珠被胚乳的内质网(ER)和液泡区室中。能量色散X射线光谱和酶处理表明,尽管这三个区室中的矿物质阳离子组成不同,但它们均以植酸(肌醇-1,2,3,4,5,6-六磷酸)盐的形式储存。胚球状体含有Mg、K和Ca作为阳离子,而珠被内质网沉积物显示出高水平的Mn,珠被液泡沉积物显示出高水平的Zn。第一批植酸锌晶体的出现与珠被液泡的网络状延伸的形成相吻合。这些网络的核心由管状内质网的分支网络组成,它们通过一层细胞质物质与界定的液泡膜分开。网络的降解始于细胞质的丧失,随后是内质网的收缩,产生一个塌陷的液泡膜网络,该网络被重新吸收。对受精的fis2种子的研究表明,只有完整的网络在矿物质螯合中起作用,fis2种子在珠被液泡区室中过度积累植酸锌晶体。矿物质测定分析和结构观察表明,Zn和Mn在不同发育阶段从胚乳转移到胚中。因此,Zn似乎在球形后期从胚乳中被去除,而Mn储存似乎在胚发育的弯曲子叶后期被去除。胚乳中植酸锰的消失与胚中两种主要的锰结合蛋白的积累相吻合,这两种蛋白是光系统II放氧复合体的33-kD蛋白和锰超氧化物歧化酶。讨论了珠被胚乳中短暂重金属储存的可能功能。提出了一个模型,展示了潜在的细胞毒性分子植酸如何从其合成部位内质网运输到不同的矿物质储存部位。

相似文献

4
Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.
Plant Physiol. 2012 Dec;160(4):2007-14. doi: 10.1104/pp.112.206573. Epub 2012 Oct 22.
5
MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana.
Plant Cell. 2006 Dec;18(12):3535-47. doi: 10.1105/tpc.106.046151. Epub 2006 Dec 28.
6
OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells.
Plant J. 2010 Dec;64(5):812-24. doi: 10.1111/j.1365-313X.2010.04370.x. Epub 2010 Nov 4.
9
New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy.
J Exp Bot. 2011 Jul;62(11):3929-39. doi: 10.1093/jxb/err090. Epub 2011 Mar 29.

引用本文的文献

4
Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates.
Front Plant Sci. 2022 Aug 11;13:944515. doi: 10.3389/fpls.2022.944515. eCollection 2022.
5
Early seed development requires the A-type ATP-binding cassette protein ABCA10.
Plant Physiol. 2022 May 3;189(1):360-374. doi: 10.1093/plphys/kiac062.
6
Embryo-Endosperm Interaction and Its Agronomic Relevance to Rice Quality.
Front Plant Sci. 2020 Nov 30;11:587641. doi: 10.3389/fpls.2020.587641. eCollection 2020.
7
Globoids and Phytase: The Mineral Storage and Release System in Seeds.
Int J Mol Sci. 2020 Oct 12;21(20):7519. doi: 10.3390/ijms21207519.
8
Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis.
Nat Plants. 2020 Sep;6(9):1146-1157. doi: 10.1038/s41477-020-0749-5. Epub 2020 Aug 24.
9
Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds.
Plant Biotechnol J. 2020 Nov;18(11):2241-2250. doi: 10.1111/pbi.13380. Epub 2020 Apr 13.
10
Can Inositol Pyrophosphates Inform Strategies for Developing Low Phytate Crops?
Plants (Basel). 2020 Jan 17;9(1):115. doi: 10.3390/plants9010115.

本文引用的文献

3
Function and regulation of seed aquaporins.
J Exp Bot. 1997 Mar;48 Spec No:421-30. doi: 10.1093/jxb/48.Special_Issue.421.
4
An abundant, highly conserved tonoplast protein in seeds.
Plant Physiol. 1989 Nov;91(3):1006-13. doi: 10.1104/pp.91.3.1006.
5
Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone.
Plant Physiol. 1985 Feb;77(2):483-5. doi: 10.1104/pp.77.2.483.
6
MOLECULAR BIOLOGY OF CATION TRANSPORT IN PLANTS.
Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:669-696. doi: 10.1146/annurev.arplant.49.1.669.
7
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
8
Embryogenesis in Higher Plants: An Overview.
Plant Cell. 1993 Oct;5(10):1361-1369. doi: 10.1105/tpc.5.10.1361.
9
The protein storage vacuole: a unique compound organelle.
J Cell Biol. 2001 Dec 10;155(6):991-1002. doi: 10.1083/jcb.200107012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验