Ito Koichi, Frolova Ludmila, Seit-Nebi Alim, Karamyshev Andrey, Kisselev Lev, Nakamura Yoshikazu
Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8494-9. doi: 10.1073/pnas.142690099.
In eukaryotes, a single translational release factor, eRF1, deciphers three stop codons, although its decoding mechanism remains puzzling. In the ciliate Tetrahymena thermophila, UAA and UAG codons are reassigned to Gln codons. A yeast eRF1-domain swap containing Tetrahymena domain 1 responded only to UGA in vitro and failed to complement a defect in yeast eRF1 in vivo at 37 degrees C. This finding demonstrates that decoding specificity of eRF1 from variant code organisms resides at domain 1. However, the wild-type eRF1 hybrid fully restored the growth of eRF1-deficient yeast at 30 degrees C. Tetrahymena eRF1 contains a variant sequence, KATNIKD, at the tip of domain 1. The TASNIKD variant of hybrid eRF1 rendered the eRF1-nullified yeast viable, although in an in vitro assay, the same hybrid eRF1 responded only to UGA. Nevertheless, the yeast eRF1 bearing the KATNIKD motif instead of the TASNIKS heptapeptide present in higher eukaryotes remains omnipotent in vivo. Collectively, these data suggest that variant genetic code organisms like Tetrahymena have an intrinsic potential to decode three stop codons in vivo, and that interaction within domain 1 between the KAT tripeptide and other sequences modulates the decoding specificity of Tetrahymena eRF1.
在真核生物中,单个翻译释放因子eRF1可识别三种终止密码子,但其解码机制仍令人费解。在纤毛虫嗜热四膜虫中,UAA和UAG密码子被重新分配为谷氨酰胺密码子。含有嗜热四膜虫结构域1的酵母eRF1结构域交换体在体外仅对UGA有反应,并且在37℃时无法在体内弥补酵母eRF1的缺陷。这一发现表明,来自密码子变体生物的eRF1的解码特异性位于结构域1。然而,野生型eRF1杂交体在30℃时完全恢复了eRF1缺陷型酵母的生长。嗜热四膜虫eRF1在结构域1的顶端含有一个变体序列KATNIKD。杂交eRF1的TASNIKD变体使eRF1缺失的酵母具有活力,尽管在体外试验中,相同的杂交eRF1仅对UGA有反应。尽管如此,带有KATNIKD基序而非高等真核生物中存在的TASNIKS七肽的酵母eRF1在体内仍然具有全能性。总的来说,这些数据表明,像嗜热四膜虫这样的密码子变体生物在体内具有解码三种终止密码子的内在潜力,并且结构域1内KAT三肽与其他序列之间的相互作用调节了嗜热四膜虫eRF1的解码特异性。