Suppr超能文献

黄瓜:线粒体转化的模式被子植物?

Cucumber: a model angiosperm for mitochondrial transformation?

作者信息

Havey Michael J, Lilly Jason W, Bohanec Borut, Bartoszewski Grzegorz, Malepszy Stefan

机构信息

Agricultural Research Service, U.S. Department of Agriculture, Vegetable Crops Unit, and Dep. of Horticulture 1575 Linden Dr., University of Wisconsin, Madison, WI 53706, USA.

出版信息

J Appl Genet. 2002;43(1):1-17.

Abstract

Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants.

摘要

植物拥有三个主要基因组,分别存在于叶绿体、线粒体和细胞核中。高等植物的叶绿体基因组往往具有相似的大小和结构。相比之下,即使在亲缘关系很近的物种之间,核基因组和线粒体基因组在大小上也存在很大差异。最大的植物线粒体基因组存在于黄瓜属中,大小为1500至2300千碱基,是酵母或人类线粒体基因组大小的100多倍。生化和分子分析表明,黄瓜巨大的线粒体基因组是由于短重复DNA基序的广泛重复。几乎所有生物的细胞器基因组都是母系遗传的,而且几乎没有方法可以操纵这些重要的基因组。尽管已经实现了叶绿体转化,但目前还没有常规方法来转化高等植物的线粒体基因组。高等植物的线粒体转化系统将使遗传学家能够利用反向遗传学来研究线粒体基因表达,并确定工程化线粒体基因对线粒体基因组遗传改良的功效。黄瓜具有三个独特的特性,使其成为高等植物线粒体转化的潜在模型系统。首先,其线粒体表现出父系遗传。其次,小孢子拥有相对较少但巨大的线粒体。最后,黄瓜中存在独特的线粒体突变,可导致强烈的镶嵌(msc)表型。这些msc表型在从细胞培养再生植株后出现,并与线粒体基因组中特定的重排和缺失区域相关。这些线粒体缺失可能是开发高等植物线粒体转化选择标记的有用遗传工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验