Delzenne N M, Daubioul C, Neyrinck A, Lasa M, Taper H S
Unit of Pharmacokinetics, Metabolism, Nutrition and Toxicology, PMNT-7369 School of Pharmacy Université Catholique de Louvain, Avenue Mounier, 73 B-1200 Brussels, Belgium.
Br J Nutr. 2002 May;87 Suppl 2:S255-9. doi: 10.1079/BJNBJN/2002545.
Inulin and oligofructose, besides their effect on the gastro-intestinal tract, are also able to exert 'systemic' effect, namely by modifying the hepatic metabolism of lipids in several animal models. Feeding male Wistar rats on a carbohydrate-rich diet containing 10 % inulin or oligofructose significantly lowers serum triacylglycerol (TAG) and phospholipid concentrations. A lower hepatic lipogenesis, through a coordinate reduction of the activity and mRNA of lipogenic enzymes is a key event in the reduction of very low-density lipoprotein-TAG secretion by oligofructose. Oligofructose is also able to counteract triglyceride metabolism disorder occurring through dietary manipulation in animals, and sometimes independently on lipogenesis modulation: oligofructose reduces post-prandial triglyceridemia by 50 % and avoids the increase in serum free cholesterol level occurring in rats fed a Western-type high fat diet. Oligofructose protects rats against liver TAG accumulation (steatosis) induced by fructose, or occurring in obese Zucker fa/fa rats. The protective effect of dietary inulin and oligofructose on steatosis in animals, would be interesting, if confirmed in humans, since steatosis is one of the most frequent liver disorders, occurring together with the plurimetabolic syndrome, in overweight people. The panel of putative mediators of the systemic effects of inulin and oligofructose consists in either modifications in glucose/insulin homeostasis, the end-products of their colonic fermentation (i.e. propionate) reaching the liver by the portal vein, incretins and/or the availability of other nutrients. The identification of the key mediators of the systemic effects of inulin and oligofructose is the key to identify target function(s) (or dysfunction(s)), and finally individuals who would take an advantage of increasing their dietary intake.
菊粉和低聚果糖除了对胃肠道有影响外,还能产生“全身”效应,即在多种动物模型中改变肝脏脂质代谢。用含10%菊粉或低聚果糖的富含碳水化合物的饮食喂养雄性Wistar大鼠,可显著降低血清三酰甘油(TAG)和磷脂浓度。通过协同降低脂肪生成酶的活性和mRNA来降低肝脏脂肪生成,是低聚果糖减少极低密度脂蛋白-TAG分泌的关键事件。低聚果糖还能够对抗通过动物饮食控制发生的甘油三酯代谢紊乱,有时独立于脂肪生成调节:低聚果糖可使餐后甘油三酯血症降低50%,并避免喂食西式高脂肪饮食的大鼠血清游离胆固醇水平升高。低聚果糖可保护大鼠免受果糖诱导的肝脏TAG积累(脂肪变性),或肥胖Zucker fa/fa大鼠中发生的脂肪变性。如果在人类中得到证实,饮食中菊粉和低聚果糖对动物脂肪变性的保护作用将很有意义,因为脂肪变性是超重人群中最常见的肝脏疾病之一,与多代谢综合征同时发生。菊粉和低聚果糖全身效应的假定介质包括葡萄糖/胰岛素稳态的改变、它们结肠发酵的终产物(即丙酸)通过门静脉到达肝脏、肠促胰岛素和/或其他营养素的可用性。确定菊粉和低聚果糖全身效应的关键介质是确定靶功能(或功能障碍)的关键,最终确定那些将从增加饮食摄入量中获益的个体。