Suppr超能文献

通过指数剂量梯度最小化进行剂量优化。

Dose optimization via index-dose gradient minimization.

作者信息

Chang Sha X, Cullip Timothy J, Rosenman Julian G, Halvorsen Per H, Tepper Joel E

机构信息

Department of Radiation Oncology, University of North Carolina at Chapel Hill, 27599-7512, USA.

出版信息

Med Phys. 2002 Jun;29(6):1130-46. doi: 10.1118/1.1478560.

Abstract

This paper presents an iterative optimization algorithm based on gradient minimization of index dose, defined as the product of physical dose and a numerical index. Acting as a template the index distribution is designed to represent the dosimetry that meets the dose volume histogram-based optimization objectives. The treatment dosimetry is optimized when the uniformity of the index-dose distribution is maximized. Prior to optimization the user can select all or only some of the beams to be intensity modulated. The remaining unmodulated beams can be either open or wedged photon beams, electron beams, or beams of previous treatments. The optimization result and treatment delivery efficiency can often be enhanced by including not only the IM photon beams but also all suitable fixed-beams available on the linac in the treatment plan. In addition, the doses from previous treatments can also be considered in the optimization of current treatment. Five clinical examples with different complexities in optimization objective are presented. The effects of two nonoptimization variables, beam setup and initial beam weights, on the quality of the dose optimization are also presented. The results are analyzed in terms of isodose distribution, dose volume histograms, and a dose optimization quality factor. The optimization algorithm, implemented in our in-house TPS PLanUNC, has been used in clinical application since 1996. The primary advantages of our optimization algorithm include computational efficiency, intensity modulation selection choice, and performance reliability for a wide range of clinical beam setups and optimization objectives.

摘要

本文提出了一种基于指数剂量梯度最小化的迭代优化算法,指数剂量定义为物理剂量与一个数值指数的乘积。指数分布作为一个模板,旨在代表满足基于剂量体积直方图的优化目标的剂量测定法。当指数剂量分布的均匀性最大化时,治疗剂量测定法即得到优化。在优化之前,用户可以选择全部或仅部分要进行强度调制的射束。其余未调制的射束可以是开放或加楔形滤过的光子射束、电子射束或先前治疗的射束。通过在治疗计划中不仅纳入调强光子射束,还纳入直线加速器上所有合适的固定射束,优化结果和治疗实施效率常常可以得到提高。此外,在当前治疗的优化中也可以考虑先前治疗的剂量。给出了五个优化目标复杂度不同的临床实例。还给出了两个非优化变量,即射束设置和初始射束权重,对剂量优化质量的影响。从等剂量分布、剂量体积直方图和剂量优化质量因子方面对结果进行了分析。我们内部开发的治疗计划系统PLanUNC中实现的优化算法自1996年以来已用于临床应用。我们优化算法的主要优点包括计算效率、强度调制选择选项以及对于广泛的临床射束设置和优化目标的性能可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验