Suppr超能文献

在分布式计算平台上使用遗传算法优化调强放射治疗治疗计划的射束角度

Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform.

作者信息

Nazareth Daryl P, Brunner Stephen, Jones Matthew D, Malhotra Harish K, Bakhtiari Mohammad

机构信息

Department of Radiation Medicine, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo NY 14263, USA.

出版信息

J Med Phys. 2009 Jul;34(3):129-32. doi: 10.4103/0971-6203.54845.

Abstract

Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time.

摘要

计划调强放射治疗(IMRT)涉及选择多个角度参数以及在优化过程中指定所采用的结构和约束条件。将这些参数纳入组合搜索空间会大幅增加计算负担,因此参数选择通常由临床医生根据临床经验手动进行。我们研究了使用遗传算法(GA)和分布式计算平台来优化机架角度参数,并深入了解在剂量优化过程中可能需要的其他结构,以生成最佳的IMRT治疗计划。对于一名IMRT前列腺患者,我们通过从均匀随机分布中选择,在满足一定的邻接和相对约束条件下,生成了第一代40个样本,每个样本包含五个机架角度。通过在运行商业治疗计划系统的多台机器上分配这40个计划的工作量来进行剂量优化。根据每个生成计划满足临床相关约束的程度为其分配一个分数。使用交叉和变异技术组合得分最高的样本生成第二代40个样本。该过程重复到第六代,并将结果与临床(等间距)机架角度配置进行比较。在第六代中,40个GA样本中有34个的得分优于临床计划,最佳计划显示出84%的改善。此外,所得的射束角度配置倾向于聚集在患者身体两侧,这表明在剂量优化过程中纳入其他结构可能会避免剂量热点。IMRT中的额外参数选择会导致大规模的计算问题。我们已经证明,GA与分布式计算平台相结合可以在合理的时间内应用于优化机架角度选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6261/2807676/6f7193d65c5c/JMP-34-129-g001.jpg

相似文献

2
Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
Int J Radiat Oncol Biol Phys. 2006 Jan 1;64(1):301-20. doi: 10.1016/j.ijrobp.2005.08.023. Epub 2005 Nov 14.
3
Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low-dose rate delivery techniques.
Med Dosim. 2014 Winter;39(4):330-6. doi: 10.1016/j.meddos.2014.05.008. Epub 2014 Jul 30.
5
Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
Int J Radiat Oncol Biol Phys. 2004 Nov 15;60(4):1325-37. doi: 10.1016/j.ijrobp.2004.06.007.
7
Automatic learning-based beam angle selection for thoracic IMRT.
Med Phys. 2015 Apr;42(4):1992-2005. doi: 10.1118/1.4908000.
8
Incorporating prior knowledge into beam orientation optimization in IMRT.
Int J Radiat Oncol Biol Phys. 2002 Dec 1;54(5):1565-74. doi: 10.1016/s0360-3016(02)03917-2.
9
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
Med Phys. 2011 Sep;38(9):5217-29. doi: 10.1118/1.3615622.

引用本文的文献

2
The Applications of Genetic Algorithms in Medicine.
Oman Med J. 2015 Nov;30(6):406-16. doi: 10.5001/omj.2015.82.
3
A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning.
Phys Med Biol. 2013 Mar 21;58(6):1933-46. doi: 10.1088/0031-9155/58/6/1933.
4
Uncertainty incorporated beam angle optimization for IMPT treatment planning.
Med Phys. 2012 Aug;39(8):5248-56. doi: 10.1118/1.4737870.

本文引用的文献

1
An approaching genetic algorithm for automatic beam angle selection in IMRT planning.
Comput Methods Programs Biomed. 2009 Mar;93(3):257-65. doi: 10.1016/j.cmpb.2008.10.005. Epub 2008 Dec 6.
2
A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy.
Phys Med Biol. 2008 Jun 21;53(12):3293-307. doi: 10.1088/0031-9155/53/12/015. Epub 2008 Jun 3.
3
Algorithm and performance of a clinical IMRT beam-angle optimization system.
Phys Med Biol. 2003 Oct 7;48(19):3191-212. doi: 10.1088/0031-9155/48/19/007.
5
Dose optimization via index-dose gradient minimization.
Med Phys. 2002 Jun;29(6):1130-46. doi: 10.1118/1.1478560.
7
Role of beam orientation optimization in intensity-modulated radiation therapy.
Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):551-60. doi: 10.1016/s0360-3016(01)01502-4.
8
10
Optimization of radiosurgery treatment planning via mixed integer programming.
Med Phys. 2000 May;27(5):995-1004. doi: 10.1118/1.598964.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验