Tamura Makio, Holbrook Stephen R
Lawrence Berkeley National Laboratory, Structural Biology Department, Physical Biosciences Division, 1 Cyclotron Road, 132 Melvin Calvin Lab, Bldg 3, Berkeley, CA 94720, USA.
J Mol Biol. 2002 Jul 12;320(3):455-74. doi: 10.1016/s0022-2836(02)00515-6.
The "ribose zipper", an important element of RNA tertiary structure, is characterized by consecutive hydrogen-bonding interactions between ribose 2'-hydroxyls from different regions of an RNA chain or between RNA chains. These tertiary contacts have previously been observed to also involve base-backbone and base-base interactions (A-minor type). We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers. Of these, 20 were found in T. thermophilus 16 S rRNA, 44 in H. marismortui 23 S rRNA (plus 2 bridging 5 S and 23 S rRNAs) and 30 in D. radiodurans 23 S rRNA (plus 1 bridging 5 S and 23 S rRNAs). These were analyzed in terms of sequence conservation, structural conservation and stability, location in secondary structure, and phylogenetic conservation. Eleven types of ribose zippers were defined based on ribose-base interactions. Of these 11, seven were observed in the ribosomal RNAs. The most common of these is the canonical ribose zipper, originally observed in the P4-P6 group I intron fragment. All ribose zippers were formed by antiparallel chain interactions and only a single example extended beyond two residues, forming an overlapping ribose zipper of three consecutive residues near the small subunit A-site. Almost all ribose zippers link stem (Watson-Crick duplex) or stem-like (base-paired), with loop (external, internal, or junction) chain segments. About two-thirds of the observed ribose zippers interact with ribosomal proteins. Most of these ribosomal proteins bridge the ribose zipper chain segments with basic amino acid residues hydrogen bonding to the RNA backbone. Proteins involved in crucial ribosome function and in early stages of ribosomal assembly also stabilize ribose zipper interactions. All ribose zippers show strong sequence conservation both within these three ribosomal RNA structures and in a large database of aligned prokaryotic sequences. The physical basis of the sequence conservation is stacked base triples formed between consecutive base-pairs on the stem or stem-like segment with bases (often adenines) from the loop-side segment. These triples have previously been characterized as Type I and Type II A-minor motifs and are stabilized by base-base and base-ribose hydrogen bonds. The sequence and structure conservation of ribose zippers can be directly used in tertiary structure prediction and may have applications in molecular modeling and design.
“核糖拉链”是RNA三级结构的一个重要元件,其特征是RNA链不同区域的核糖2'-羟基之间或RNA链之间存在连续的氢键相互作用。此前已观察到这些三级相互作用还涉及碱基-骨架和碱基-碱基相互作用(A- minor型)。我们在嗜盐嗜盐碱杆菌(Haloarcula marismortui)和耐辐射异常球菌(Deinococcus radiodurans)的大核糖体亚基RNA以及嗜热栖热菌(Thermus thermophilus)的小核糖体亚基RNA的晶体结构中搜索核糖拉链三级相互作用,共鉴定出97个核糖拉链。其中,20个存在于嗜热栖热菌16S rRNA中,44个存在于嗜盐嗜盐碱杆菌23S rRNA中(外加2个连接5S和23S rRNA的),30个存在于耐辐射异常球菌23S rRNA中(外加1个连接5S和23S rRNA的)。我们从序列保守性、结构保守性和稳定性、在二级结构中的位置以及系统发育保守性等方面对这些核糖拉链进行了分析。基于核糖-碱基相互作用定义了11种类型的核糖拉链。在这11种类型中,有7种在核糖体RNA中被观察到。其中最常见的是典型核糖拉链,最初在P4 - P6 I型内含子片段中观察到。所有核糖拉链均由反平行链相互作用形成,只有一个例子延伸超过两个残基,在小亚基A位点附近形成了一个由三个连续残基组成的重叠核糖拉链。几乎所有核糖拉链都连接茎(沃森-克里克双链体)或茎状(碱基配对)与环(外部、内部或连接)链段。约三分之二观察到的核糖拉链与核糖体蛋白相互作用。这些核糖体蛋白大多通过碱性氨基酸残基与RNA骨架形成氢键来连接核糖拉链链段。参与关键核糖体功能和核糖体组装早期阶段的蛋白质也能稳定核糖拉链相互作用。所有核糖拉链在这三种核糖体RNA结构以及一个大型原核生物序列比对数据库中均表现出很强的序列保守性。序列保守性的物理基础是茎或茎状片段上连续碱基对与环侧链段上的碱基(通常是腺嘌呤)之间形成的堆积碱基三联体。这些三联体此前已被表征为I型和II型A - minor基序,并通过碱基-碱基和碱基-核糖氢键得以稳定。核糖拉链的序列和结构保守性可直接用于三级结构预测,并可能在分子建模和设计中得到应用。