Petrov Anton S, Bernier Chad R, Gulen Burak, Waterbury Chris C, Hershkovits Eli, Hsiao Chiaolong, Harvey Stephen C, Hud Nicholas V, Fox George E, Wartell Roger M, Williams Loren Dean
Center for Ribosomal Origins and Evolution, Georgia Institute of Technology, Atlanta, Georgia, United States of America ; School of Chemistry and Biochemistry Georgia Institute of Technology, Atlanta, Georgia, United States of America.
Center for Ribosomal Origins and Evolution, Georgia Institute of Technology, Atlanta, Georgia, United States of America ; Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America.
PLoS One. 2014 Feb 5;9(2):e88222. doi: 10.1371/journal.pone.0088222. eCollection 2014.
Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2°) structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU) 23S/28S and small subunit (SSU) 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only), Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery). Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision).
准确的二级结构对于理解核糖体非常重要,核糖体极其庞大且高度复杂。我们以核糖体的三维结构作为输入,对传统的核糖体RNA二级结构进行了修订和校正。我们通过特定的几何和分子相互作用标准来识别螺旋,而非通过共变。这种结构方法使我们能够将非经典碱基对与沃森-克里克碱基对同等对待。由此得到的核糖体RNA二级结构是最新的,与三维结构一致,且信息丰富。这些二级结构相对易于理解,终端用户可以进行复制和修改。这里提供的二级结构广泛涵盖了系统发育树,并与各种与分子相互作用和几何结构、系统发育和进化相关的数据进行了映射。我们已经生成了大肠杆菌、嗜热栖热菌、死海嗜盐菌(仅大亚基核糖体RNA)、酿酒酵母、黑腹果蝇和智人的大亚基(LSU)23S/28S和小亚基(SSU)16S/18S核糖体RNA的二级结构。我们以多种文件格式提供了二级结构的高分辨率可编辑版本。对于小亚基核糖体RNA,二级结构使用了中央假结的直观表示,其中碱基三联体以碱基对的形式呈现。大亚基和小亚基的二级图谱均可在(http://apollo.chemistry.gatech.edu/RibosomeGallery)获取。数据到二级结构的映射是在RiboVision服务器(http://apollo.chemistry.gatech.edu/RiboVision)上进行的。