Biswas Tapan, Clos Lawrence J, SantaLucia John, Mitra Sankar, Roy Rabindra
Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1079, USA.
J Mol Biol. 2002 Jul 12;320(3):503-13. doi: 10.1016/S0022-2836(02)00519-3.
Most DNA glycosylases including N-methylpurine-DNA glycosylase (MPG), which initiate DNA base excision repair, have a wide substrate range of damaged or altered bases in duplex DNA. In contrast, uracil-DNA glycosylase (UDG) is specific for uracil and excises it from both single-stranded and duplex DNAs. Here we show by DNA footprinting analysis that MPG, but not UDG, bound to base-pair mismatches especially to less stable pyrimidine-pyrimidine pairs, without catalyzing detectable base cleavage. Thermal denaturation studies of these normal and damaged (e.g. 1,N(6)-ethenoadenine, varepsilonA) base mispairs indicate that duplex instability rather than exact fit of the flipped out damaged base in the catalytic pocket is a major determinant in the initial recognition of damage by MPG. Finally, based on our determination of binding affinity and catalytic efficiency we conclude that the initial recognition of substrate base lesions by MPG is dependent on the ease of flipping of the base from unstable pairs to a flexible catalytic pocket.
大多数DNA糖基化酶,包括启动DNA碱基切除修复的N-甲基嘌呤-DNA糖基化酶(MPG),对双链DNA中受损或改变的碱基具有广泛的底物范围。相比之下,尿嘧啶-DNA糖基化酶(UDG)对尿嘧啶具有特异性,并能从单链和双链DNA中切除尿嘧啶。在这里,我们通过DNA足迹分析表明,MPG而非UDG与碱基对错配结合,尤其是与稳定性较差的嘧啶-嘧啶对结合,且不催化可检测到的碱基切割。对这些正常和受损(如1,N(6)-乙烯腺嘌呤,εA)碱基错配的热变性研究表明,双链不稳定性而非翻转出的受损碱基在催化口袋中的精确契合是MPG初始识别损伤的主要决定因素。最后,基于我们对结合亲和力和催化效率的测定,我们得出结论,MPG对底物碱基损伤的初始识别取决于碱基从不稳定对翻转到灵活催化口袋的难易程度。