Luijten Erik, Blöte Henk W J
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA.
Phys Rev Lett. 2002 Jul 8;89(2):025703. doi: 10.1103/PhysRevLett.89.025703. Epub 2002 Jun 20.
We investigate phase transitions of two-dimensional Ising models with power-law interactions, using an efficient Monte Carlo algorithm. For slow decay, the transition is of the mean-field type; for fast decay, it belongs to the short-range Ising universality class. We focus on the intermediate range, where the critical exponents depend continuously on the power law. We find that the boundary with short-range critical behavior occurs for interactions depending on distance r as r(-15/4). This answers a long-standing controversy between mutually conflicting renormalization-group analyses.
我们使用一种高效的蒙特卡罗算法研究具有幂律相互作用的二维伊辛模型的相变。对于缓慢衰减,转变是平均场类型的;对于快速衰减,它属于短程伊辛普适类。我们关注中间范围,其中临界指数连续依赖于幂律。我们发现,对于依赖于距离(r)为(r^{(-15/4)})的相互作用,会出现与短程临界行为的边界。这解决了相互冲突的重整化群分析之间长期存在的争议。