Gatenby Robert A, Frieden B Roy
Department of Radiology, University of Arizona, Tucson, Arizona 85724, USA.
Cancer Res. 2002 Jul 1;62(13):3675-84.
Cellular information dynamics during somatic evolution of the malignant phenotypes are complex and poorly understood. Accumulating, random genetic mutations and, therefore, loss of genomic information appears necessary for carcinogenesis. However, additional control parameters can be inferred because unconstrained mutagenesis would ultimately produce cellular information degradation incompatible with life. Similarly, the stability of some genomic segments, such as those controlling proliferation and metabolism, indicates the presence of selective mutational constraints. By applying Information Theory and Extreme Physical Information (EPI) analysis, we demonstrate that the phenotypic characteristics and growth pattern of cancer populations are emergent properties resulting from the nonlinear dynamics of accumulating, random genetic mutations and tissue selection factors. Maximum quantitative loss of transgenerational information is demonstrated in genomic segments encoding negative or neutral evolutionary properties. This is most evident in the progressive dedifferentiation observed during carcinogenesis and may terminate in a differentiation "information catastrophe" producing decoherent cellular morphology and function. In contrast, microenvironmental selection pressures preserve genomic information controlling properties that confer selective growth advantages even in the presence of a high background mutation rate. Thus, phenotypic traits characteristically retained by tumor populations can be identified as critical selection parameters favoring clonal proliferation. The information model of carcinogenesis is tested by applying EPI analysis to predict tumor growth dynamics. We found that cellular proliferation attributable to information degradation will produce power law tumor growth with an exponent of 1.62. Data from six published studies that use sequential mammograms to measure the volume of small, untreated human breast cancers demonstrate power law tumor growth with a mean exponent value of 1.73 +/- 0.23. Other predictions including exponential growth of tumor cells in vitro are also supported by experimental observations. The nonlinear dynamics of stochastic information loss constrained by somatic evolution indicate that carcinogenesis will not be associated with any predictable, fixed sequence of genomic alterations. Rather, sporadic clinical cancers are emergent structures produced by multiple, fundamentally nondeterministic genetic pathways.
恶性表型体细胞进化过程中的细胞信息动力学十分复杂,目前了解甚少。致癌过程中似乎需要累积的随机基因突变,进而导致基因组信息丢失。然而,可以推断出其他控制参数,因为无限制的诱变最终会导致细胞信息退化,从而与生命不相容。同样,一些基因组片段(如控制增殖和代谢的片段)的稳定性表明存在选择性突变限制。通过应用信息论和极端物理信息(EPI)分析,我们证明癌症群体的表型特征和生长模式是累积的随机基因突变和组织选择因素的非线性动力学产生的涌现特性。在编码负向或中性进化特性的基因组片段中,跨代信息的最大定量损失得到了证明。这在致癌过程中观察到的渐进性去分化中最为明显,并且可能以分化“信息灾难”告终,从而产生不连贯的细胞形态和功能。相比之下,微环境选择压力会保留控制那些赋予选择性生长优势特性的基因组信息,即使在高背景突变率的情况下也是如此。因此,肿瘤群体特有的表型特征可以被确定为有利于克隆增殖的关键选择参数。通过应用EPI分析来预测肿瘤生长动力学,对致癌作用的信息模型进行了测试。我们发现,由于信息降解导致的细胞增殖将产生指数为1.62的幂律肿瘤生长。来自六项已发表研究的数据(这些研究使用连续乳房X光片测量未经治疗的小体积人类乳腺癌的体积)表明幂律肿瘤生长,平均指数值为1.73±0.23。包括肿瘤细胞在体外指数生长在内的其他预测也得到了实验观察的支持。体细胞进化限制的随机信息丢失的非线性动力学表明,致癌作用不会与任何可预测的、固定的基因组改变序列相关。相反,散发性临床癌症是由多个根本上不确定的遗传途径产生的涌现结构。