Sardanyés Josep, Martínez Regina, Simó Carles, Solé Ricard
ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
J Math Biol. 2017 Jun;74(7):1589-1609. doi: 10.1007/s00285-016-1062-9. Epub 2016 Oct 6.
The dynamics of heterogeneous tumor cell populations competing with healthy cells is an important topic in cancer research with deep implications in biomedicine. Multitude of theoretical and computational models have addressed this issue, especially focusing on the nature of the transitions governing tumor clearance as some relevant model parameters are tuned. In this contribution, we analyze a mathematical model of unstable tumor progression using the quasispecies framework. Our aim is to define a minimal model incorporating the dynamics of competition between healthy cells and a heterogeneous population of cancer cell phenotypes involving changes in replication-related genes (i.e., proto-oncogenes and tumor suppressor genes), in genes responsible for genomic stability, and in house-keeping genes. Such mutations or loss of genes result into different phenotypes with increased proliferation rates and/or increased genomic instabilities. Despite bifurcations in the classical deterministic quasispecies model are typically given by smooth, continuous shifts (i.e., transcritical bifurcations), we here identify a novel type of bifurcation causing an abrupt transition to tumor extinction. Such a bifurcation, named as trans-heteroclinic, is characterized by the exchange of stability between two distant fixed points (that do not collide) involving tumor persistence and tumor clearance. The increase of mutation and/or the decrease of the replication rate of tumor cells involves this catastrophic shift of tumor cell populations. The transient times near bifurcation thresholds are also characterized, showing a power law dependence of exponent [Formula: see text] of the transients as mutation is changed near the bifurcation value. These results are discussed in the context of targeted cancer therapy as a possible therapeutic strategy to force a catastrophic shift by simultaneously delivering mutagenic and cytotoxic drugs inside tumor cells.
异质性肿瘤细胞群体与健康细胞竞争的动力学是癌症研究中的一个重要课题,在生物医学领域具有深远意义。众多理论和计算模型都探讨了这个问题,特别是在调整一些相关模型参数时,重点关注控制肿瘤清除的转变性质。在本论文中,我们使用准种框架分析了一个不稳定肿瘤进展的数学模型。我们的目标是定义一个最小模型,该模型纳入健康细胞与异质性癌细胞表型群体之间的竞争动力学,这些表型涉及与复制相关基因(即原癌基因和肿瘤抑制基因)、负责基因组稳定性的基因以及管家基因的变化。这些基因的突变或缺失会导致具有更高增殖率和/或更高基因组不稳定性的不同表型。尽管经典确定性准种模型中的分岔通常由平滑、连续的转变给出(即跨临界分岔),但我们在此识别出一种新型分岔,它会导致向肿瘤灭绝的突然转变。这种分岔被称为跨异宿分岔,其特征是两个遥远的不动点(不碰撞)之间的稳定性交换,涉及肿瘤持续存在和肿瘤清除。肿瘤细胞突变的增加和/或复制率的降低会导致肿瘤细胞群体的这种灾难性转变。我们还对分岔阈值附近的瞬态时间进行了表征,结果表明,当在分岔值附近改变突变时,瞬态的指数[公式:见原文]呈现幂律依赖关系。我们在靶向癌症治疗的背景下讨论了这些结果,将其作为一种可能的治疗策略,即通过在肿瘤细胞内同时递送诱变剂和细胞毒性药物来迫使发生灾难性转变。