Kobayashi Sawami, Valentine Michael R, Pham Phuong, O'Donnell Mike, Goodman Myron F
Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratories, University of Southern California, University Park, Los Angeles, CA 90089-1340, USA.
J Biol Chem. 2002 Sep 13;277(37):34198-207. doi: 10.1074/jbc.M204826200. Epub 2002 Jul 3.
Escherichia coli DNA polymerase IV (pol IV), a member of the error-prone Y family, predominantly generates -1 frameshifts when copying DNA in vitro. T-->G transversions and T-->C transitions are the most frequent base substitutions observed. The in vitro data agree with mutational spectra obtained when pol IV is overexpressed in vivo. Single base deletion and base substitution rates measured in the lacZalpha gene in vitro are, on average, 2 x 10(-4) and 5 x 10(-5), respectively. The range of misincorporation and mismatch extension efficiencies determined kinetically are 10(-3) to 10(-5). The presence of beta sliding clamp and gamma-complex clamp loading proteins strongly enhance pol IV processivity but have no discernible influence on fidelity. By analyzing changes in fluorescence of a 2-aminopurine template base undergoing replication in real time, we show that a "dNTP-stabilized" misalignment mechanism is responsible for making -1 frameshift mutations on undamaged DNA. In this mechanism, a dNTP substrate is paired "correctly" opposite a downstream template base, on a "looped out" template strand instead of mispairing opposite a next available template base. By using the same mechanism, pol IV "skips" past an abasic template lesion to generate a -1 frameshift. A crystal structure depicting dNTP-stabilized misalignment was reported recently for Sulfolubus solfataricus Dpo4, a Y family homolog of Escherichia coli pol IV.
大肠杆菌DNA聚合酶IV(pol IV)是易出错的Y家族成员之一,在体外复制DNA时主要产生-1移码突变。观察到的最常见碱基替换是T→G颠换和T→C转换。体外数据与pol IV在体内过表达时获得的突变谱一致。在体外lacZα基因中测得的单碱基缺失率和碱基替换率平均分别为2×10⁻⁴和5×10⁻⁵。通过动力学测定的错误掺入范围和错配延伸效率为10⁻³至10⁻⁵。β滑动夹和γ复合夹加载蛋白的存在强烈增强了pol IV的持续合成能力,但对保真度没有明显影响。通过实时分析在复制过程中2-氨基嘌呤模板碱基荧光的变化,我们表明“dNTP稳定”的错配机制是在未受损DNA上产生-1移码突变的原因。在这种机制中,dNTP底物与下游模板碱基“正确”配对,位于“环出”的模板链上,而不是与下一个可用模板碱基错配。通过使用相同的机制,pol IV“跳过”无碱基模板损伤以产生-1移码突变。最近报道了嗜热栖热菌Dpo4(大肠杆菌pol IV的Y家族同源物)的描绘dNTP稳定错配的晶体结构。