Suppr超能文献

2-氨基乙基膦酸降解途径中的2-氨基乙基膦酸特异性转氨酶。

The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.

作者信息

Kim Alexander D, Baker Angela S, Dunaway-Mariano Debra, Metcalf W W, Wanner B L, Martin Brian M

机构信息

Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

J Bacteriol. 2002 Aug;184(15):4134-40. doi: 10.1128/JB.184.15.4134-4140.2002.

Abstract

The 2-aminoethylphosphonate transaminase (AEPT; the phnW gene product) of the Salmonella enterica serovar Typhimurium 2-aminoethylphosphonate (AEP) degradation pathway catalyzes the reversible reaction of AEP and pyruvate to form phosphonoacetaldehyde (P-Ald) and L-alanine (L-Ala). Here, we describe the purification and characterization of recombinant AEPT. pH rate profiles (log V(m) and log V(m)/K(m) versus pH) revealed a pH optimum of 8.5. At pH 8.5, K(eq) is equal to 0.5 and the k(cat) values of the forward and reverse reactions are 7 and 9 s(-1), respectively. The K(m) for AEP is 1.11 +/- 0.03 mM; for pyruvate it is 0.15 +/- 0.02 mM, for P-Ald it is 0.09 +/- 0.01 mM, and for L-Ala it is 1.4 +/- 0.03 mM. Substrate specificity tests revealed a high degree of discrimination, indicating a singular physiological role for the transaminase in AEP degradation. The 40-kDa subunit of the homodimeric enzyme is homologous to other members of the pyridoxalphosphate-dependent amino acid transaminase superfamily. Catalytic residues conserved within well-characterized members are also conserved within the seven known AEPT sequences. Site-directed mutagenesis demonstrated the importance of three selected residues (Asp168, Lys194, and Arg340) in AEPT catalysis.

摘要

鼠伤寒沙门氏菌2-氨基乙基膦酸酯(AEP)降解途径中的2-氨基乙基膦酸酯转氨酶(AEPT;phnW基因产物)催化AEP与丙酮酸之间的可逆反应,生成膦酰乙醛(P-Ald)和L-丙氨酸(L-Ala)。在此,我们描述了重组AEPT的纯化和特性。pH速率曲线(log V(m)和log V(m)/K(m)对pH)显示最适pH为8.5。在pH 8.5时,K(eq)等于0.5,正向和逆向反应的k(cat)值分别为7和9 s(-1)。AEP的K(m)为1.11±0.03 mM;丙酮酸的K(m)为0.15±0.02 mM,P-Ald的K(m)为0.09±0.01 mM,L-Ala的K(m)为1.4±0.03 mM。底物特异性测试显示出高度的选择性,表明转氨酶在AEP降解中具有单一的生理作用。同二聚体酶的40 kDa亚基与磷酸吡哆醛依赖性氨基酸转氨酶超家族的其他成员同源。在特征明确的成员中保守的催化残基在七个已知的AEPT序列中也保守。定点诱变证明了三个选定残基(Asp168、Lys194和Arg340)在AEPT催化中的重要性。

相似文献

1
The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.
J Bacteriol. 2002 Aug;184(15):4134-40. doi: 10.1128/JB.184.15.4134-4140.2002.
2
Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1.
Biochem Biophys Res Commun. 2021 May 7;552:114-119. doi: 10.1016/j.bbrc.2021.03.046. Epub 2021 Mar 18.
4
Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: ()-1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase.
Biochemistry. 2021 Apr 20;60(15):1214-1225. doi: 10.1021/acs.biochem.1c00092. Epub 2021 Apr 8.
6
Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.
Biochemistry. 1989 Jun 13;28(12):5306-10. doi: 10.1021/bi00438a058.
8
Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.
Appl Microbiol Biotechnol. 2003 Jun;61(5-6):463-71. doi: 10.1007/s00253-003-1250-6. Epub 2003 Apr 10.
9
Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
J Biol Chem. 2011 Jun 24;286(25):22283-90. doi: 10.1074/jbc.M111.237735. Epub 2011 May 4.

引用本文的文献

1
Genomic context analysis enables the discovery of an unusual NAD-dependent racemase in phosphonate catabolism.
FEBS J. 2025 Aug;292(16):4272-4288. doi: 10.1111/febs.70130. Epub 2025 May 19.
2
Laundry Isolate sp. UBM14 Capable of Biodegrading Industrially Relevant Aminophosphonates.
Microorganisms. 2024 Aug 13;12(8):1664. doi: 10.3390/microorganisms12081664.
3
Glyphosate-Induced Phosphonatase Operons in Soil Bacteria of the Genus .
Int J Mol Sci. 2024 Jun 10;25(12):6409. doi: 10.3390/ijms25126409.
4
A validated pangenome-scale metabolic model for the species complex.
Microb Genom. 2024 Feb;10(2). doi: 10.1099/mgen.0.001206.
5
Taxonomic distribution of metabolic functions in bacteria associated with consortia.
mSystems. 2023 Dec 21;8(6):e0074223. doi: 10.1128/msystems.00742-23. Epub 2023 Nov 2.
6
Deciphering the role of recurrent FAD-dependent enzymes in bacterial phosphonate catabolism.
iScience. 2023 Oct 4;26(11):108108. doi: 10.1016/j.isci.2023.108108. eCollection 2023 Nov 17.
7
The Microbial Degradation of Natural and Anthropogenic Phosphonates.
Molecules. 2023 Sep 29;28(19):6863. doi: 10.3390/molecules28196863.
8
Phosphorus starvation response and PhoB-independent utilization of organic phosphate sources by .
Microbiol Spectr. 2023 Dec 12;11(6):e0226023. doi: 10.1128/spectrum.02260-23. Epub 2023 Oct 3.
10
PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes.
Microbiome. 2022 Jul 4;10(1):101. doi: 10.1186/s40168-022-01292-1.

本文引用的文献

1
Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita.
Lipids. 2001 Nov;36(11):1255-64. doi: 10.1007/s11745-001-0840-3.
2
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen.
Nature. 2000 Aug 31;406(6799):959-64. doi: 10.1038/35023079.
4
Enhanced genome annotation using structural profiles in the program 3D-PSSM.
J Mol Biol. 2000 Jun 2;299(2):499-520. doi: 10.1006/jmbi.2000.3741.
5
The manifold of vitamin B6 dependent enzymes.
Structure. 2000 Jan 15;8(1):R1-6. doi: 10.1016/s0969-2126(00)00085-x.
6
Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
J Bacteriol. 1999 Jan;181(2):389-95. doi: 10.1128/JB.181.2.389-395.1999.
9
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. doi: 10.1093/nar/25.17.3389.
10
Aminotransferases: demonstration of homology and division into evolutionary subgroups.
Eur J Biochem. 1993 Jun 1;214(2):549-61. doi: 10.1111/j.1432-1033.1993.tb17953.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验