Fiaux Jocelyne, Bertelsen Eric B, Horwich Arthur L, Wüthrich Kurt
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.
Nature. 2002 Jul 11;418(6894):207-11. doi: 10.1038/nature00860.
Biomacromolecular structures with a relative molecular mass (M(r)) of 50,000 to 100,000 (50K 100K) have been generally considered to be inaccessible to analysis by solution NMR spectroscopy. Here we report spectra recorded from bacterial chaperonin complexes ten times this size limit (up to M(r) 900K) using the techniques of transverse relaxation-optimized spectroscopy and cross-correlated relaxation-enhanced polarization transfer. These techniques prevent deterioration of the NMR spectra by the rapid transverse relaxation of the magnetization to which large, slowly tumbling molecules are otherwise subject. We tested the resolving power of these techniques by examining the isotope-labelled homoheptameric co-chaperonin GroES (M(r) 72K), either free in solution or in complex with the homotetradecameric chaperonin GroEL (M(r) 800K) or with the single-ring GroEL variant SR1 (M(r) 400K). Most amino acids of GroES show the same resonances whether free in solution or in complex with chaperonin; however, residues 17 32 show large chemical shift changes on binding. These amino acids belong to a mobile loop region of GroES that forms contacts with GroEL. This establishes the utility of these techniques for solution NMR studies that should permit the exploration of structure, dynamics and interactions in large macromolecular complexes.
相对分子质量(M(r))在50,000至100,000(50K至100K)之间的生物大分子结构通常被认为无法通过溶液核磁共振光谱进行分析。在此,我们报告了使用横向弛豫优化光谱和交叉相关弛豫增强极化转移技术,从大小为该尺寸限制十倍(高达M(r) 900K)的细菌伴侣蛋白复合物中记录的光谱。这些技术可防止因大的、缓慢翻滚的分子所导致的磁化强度快速横向弛豫而使核磁共振光谱恶化。我们通过检测同位素标记的同七聚体共伴侣蛋白GroES(M(r) 72K)来测试这些技术的分辨能力,该蛋白既可以游离于溶液中,也可以与同十四聚体伴侣蛋白GroEL(M(r) 800K)或单环GroEL变体SR1(M(r) 400K)形成复合物。无论游离于溶液中还是与伴侣蛋白形成复合物,GroES的大多数氨基酸都显示出相同的共振;然而,第17至32位残基在结合时会出现较大的化学位移变化。这些氨基酸属于GroES的一个可移动环区域,该区域与GroEL形成接触。这确立了这些技术在溶液核磁共振研究中的实用性,应该能够探索大型大分子复合物中的结构、动力学和相互作用。