Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Nat Methods. 2019 Apr;16(4):333-340. doi: 10.1038/s41592-019-0334-x. Epub 2019 Mar 11.
Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of F nuclei and leveraged the remarkable relaxation properties of the aromatic F-C spin pair to disperse F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of F-C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.
关于生物分子结构和动力学的原子级信息对于理解它们的功能至关重要。核磁共振(NMR)光谱学为生物分子及其相互作用的动态性质提供了独特的见解,捕捉瞬态构象及其特征。然而,弛豫引起的谱线增宽和信号重叠使得难以将 NMR 光谱学应用于大型生物系统。在这里,我们利用 F 核的高灵敏度和宽化学位移范围,并利用芳族 F-C 自旋对的显著弛豫性质,在二维横向弛豫优化光谱中分散 F 共振。我们展示了 F-C 横向弛豫优化光谱在研究蛋白质和核酸中的应用。该实验扩展了 F NMR 在研究大型和复杂生物系统的结构、动力学和功能方面的范围,并提供了一种强大的无背景 NMR 探针。