Ciampi Antonio, Zhang Fulin
Department of Epidemiology and Biostatistics, McGill University, 1020 Pine Avenue West, Montreal, P.Q., H3A 1A2 Canada.
Stat Med. 2002 May 15;21(9):1309-30. doi: 10.1002/sim.1107.
We present a new approach to training back-propagation artificial neural nets (BP-ANN) based on regularization and cross-validation and on initialization by a logistic regression (LR) model. The new approach is expected to produce a BP-ANN predictor at least as good as the LR-based one. We have applied the approach to ten data sets of biomedical interest and systematically compared BP-ANN and LR. In all data sets, taking deviance as criterion, the BP-ANN predictor outperforms the LR predictor used in the initialization, and in six cases the improvement is statistically significant. The other evaluation criteria used (C-index, MSE and error rate) yield variable results, but, on the whole, confirm that, in practical situations of clinical interest, proper training may significantly improve the predictive performance of a BP-ANN.
我们提出了一种基于正则化和交叉验证以及通过逻辑回归(LR)模型进行初始化来训练反向传播人工神经网络(BP-ANN)的新方法。预计这种新方法能产生至少与基于LR的方法一样好的BP-ANN预测器。我们已将该方法应用于十个具有生物医学研究价值的数据集,并对BP-ANN和LR进行了系统比较。在所有数据集中,以偏差为标准,BP-ANN预测器优于初始化时使用的LR预测器,并且在六个案例中,这种改进具有统计学意义。所使用的其他评估标准(C指数、均方误差和错误率)产生了不同的结果,但总体上证实,在具有临床研究价值的实际情况中,适当的训练可以显著提高BP-ANN的预测性能。