Suppr超能文献

一种训练反向传播人工神经网络的新方法:对来自临床研究的十个数据集的实证评估。

A new approach to training back-propagation artificial neural networks: empirical evaluation on ten data sets from clinical studies.

作者信息

Ciampi Antonio, Zhang Fulin

机构信息

Department of Epidemiology and Biostatistics, McGill University, 1020 Pine Avenue West, Montreal, P.Q., H3A 1A2 Canada.

出版信息

Stat Med. 2002 May 15;21(9):1309-30. doi: 10.1002/sim.1107.

Abstract

We present a new approach to training back-propagation artificial neural nets (BP-ANN) based on regularization and cross-validation and on initialization by a logistic regression (LR) model. The new approach is expected to produce a BP-ANN predictor at least as good as the LR-based one. We have applied the approach to ten data sets of biomedical interest and systematically compared BP-ANN and LR. In all data sets, taking deviance as criterion, the BP-ANN predictor outperforms the LR predictor used in the initialization, and in six cases the improvement is statistically significant. The other evaluation criteria used (C-index, MSE and error rate) yield variable results, but, on the whole, confirm that, in practical situations of clinical interest, proper training may significantly improve the predictive performance of a BP-ANN.

摘要

我们提出了一种基于正则化和交叉验证以及通过逻辑回归(LR)模型进行初始化来训练反向传播人工神经网络(BP-ANN)的新方法。预计这种新方法能产生至少与基于LR的方法一样好的BP-ANN预测器。我们已将该方法应用于十个具有生物医学研究价值的数据集,并对BP-ANN和LR进行了系统比较。在所有数据集中,以偏差为标准,BP-ANN预测器优于初始化时使用的LR预测器,并且在六个案例中,这种改进具有统计学意义。所使用的其他评估标准(C指数、均方误差和错误率)产生了不同的结果,但总体上证实,在具有临床研究价值的实际情况中,适当的训练可以显著提高BP-ANN的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验