Hernán Miguel A, Brumback Babette A, Robins James M
Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
Stat Med. 2002 Jun 30;21(12):1689-709. doi: 10.1002/sim.1144.
Even in the absence of unmeasured confounding factors or model misspecification, standard methods for estimating the causal effect of a time-varying treatment on the mean of a repeated measures outcome (for example, GEE regression) may be biased when there are time-dependent variables that are simultaneously confounders of the effect of interest and are predicted by previous treatment. In contrast, the recently developed marginal structural models (MSMs) can provide consistent estimates of causal effects when unmeasured confounding and model misspecification are absent. We describe an MSM for repeated measures that parameterizes the marginal means of counterfactual outcomes corresponding to prespecified treatment regimes. The parameters of MSMs are estimated using a new class of estimators - inverse-probability of treatment weighted estimators. We used an MSM to estimate the effect of zidovudine therapy on mean CD4 count among HIV-infected men in the Multicenter AIDS Cohort Study. We estimated a potential expected increase of 5.4 (95 per cent confidence interval -1.8,12.7) CD4 lymphocytes/l per additional study visit while on zidovudine therapy. We also explain the theory and implementation of MSMs for repeated measures data and draw upon a simple example to illustrate the basic ideas.
即使不存在未测量的混杂因素或模型设定错误,当存在随时间变化的变量,这些变量既是感兴趣效应的混杂因素,又由先前的治疗所预测时,用于估计时变治疗对重复测量结果均值的因果效应的标准方法(例如,广义估计方程回归)可能会产生偏差。相比之下,最近开发的边际结构模型(MSM)在不存在未测量的混杂和模型设定错误时,可以提供因果效应的一致估计。我们描述了一种用于重复测量的MSM,它对与预先指定的治疗方案相对应的反事实结果的边际均值进行参数化。MSM的参数使用一类新的估计器——治疗加权逆概率估计器来估计。我们使用MSM来估计在多中心艾滋病队列研究中齐多夫定治疗对HIV感染男性平均CD4细胞计数的影响。我们估计在接受齐多夫定治疗期间,每增加一次研究访视,CD4淋巴细胞/升可能预期增加5.4(95%置信区间 -1.8,12.7)。我们还解释了用于重复测量数据的MSM的理论和实施,并通过一个简单的例子来说明基本思想。