Suppr超能文献

来自个体患者的连续性结果数据的荟萃分析。

Meta-analysis of continuous outcome data from individual patients.

作者信息

Higgins J P, Whitehead A, Turner R M, Omar R Z, Thompson S G

机构信息

MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge CB2 2SR, U.K.

出版信息

Stat Med. 2001 Aug 15;20(15):2219-41. doi: 10.1002/sim.918.

Abstract

Meta-analyses using individual patient data are becoming increasingly common and have several advantages over meta-analyses of summary statistics. We explore the use of multilevel or hierarchical models for the meta-analysis of continuous individual patient outcome data from clinical trials. A general framework is developed which encompasses traditional meta-analysis, as well as meta-regression and the inclusion of patient-level covariates for investigation of heterogeneity. Unexplained variation in treatment differences between trials is considered as random. We focus on models with fixed trial effects, although an extension to a random effect for trial is described. The methods are illustrated on an example in Alzheimer's disease in a classical framework using SAS PROC MIXED and MLwiN, and in a Bayesian framework using BUGS. Relative merits of the three software packages for such meta-analyses are discussed, as are the assessment of model assumptions and extensions to incorporate more than two treatments.

摘要

使用个体患者数据的荟萃分析正变得越来越普遍,并且与汇总统计量的荟萃分析相比具有若干优势。我们探讨了使用多层或分层模型对来自临床试验的连续性个体患者结局数据进行荟萃分析。我们开发了一个通用框架,该框架涵盖传统荟萃分析、荟萃回归以及纳入患者水平协变量以研究异质性。试验间治疗差异中无法解释的变异被视为随机的。我们专注于具有固定试验效应的模型,尽管也描述了对试验随机效应的扩展。在一个经典框架中,使用SAS PROC MIXED和MLwiN,并在贝叶斯框架中使用BUGS,以阿尔茨海默病的一个例子对这些方法进行了说明。讨论了这三个软件包在此类荟萃分析中的相对优点,以及模型假设的评估和纳入两种以上治疗方法的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验