Jas Gouri S, Kuczera Krzysztof
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
Proteins. 2002 Aug 1;48(2):257-68. doi: 10.1002/prot.10133.
In the course of aging or under conditions of oxidative stress, methionine residues of calmodulin undergo oxidation, leading to loss of biological activity of the protein. We have performed free-energy simulations of the effects of C-terminal methionine side-chain oxidation on the properties of calmodulin. The simulation results indicate that oxidation should have a destabilizing effect on all three protein functional states: calcium free, calcium loaded, and with both calcium and target peptide bound. Because the different states are destabilized by different amounts, this leads to a more complex pattern in the observable effects on protein thermal stability, calcium affinity, and binding of a target peptide. The influence of oxidation on the free energy of CaM unfolding is estimated by comparing the free-energy cost of oxidizing a Met residue in a Gly-Met-Gly peptide and in the protein. The protein thermal stability of the oxidized forms is lowered by a moderate amount 1-3 kcal/mol, in qualitative agreement with experimental results of 0.3 kcal/mol. The calculated changes in affinity for calcium and for the target peptide show opposing trends. Oxidation at position 144 is predicted to enhance peptide binding and weaken calcium binding, whereas oxidation at 145 weakens peptide binding and enhances affinity for calcium. The lower affinity of Met 145-oxidized calmodulin toward the target peptide correlates with experimentally observed lowering of calmodulin-activated Ca-ATPase activity when oxidized calmodulin from aged rat brains is used. Thus, our simulations suggest that Met 145 is the oxidation site in the C-terminal fragment of calmodulin. The microscopic mechanism behind the calculated free energy changes appears to be a greater affinity for water of the oxidized Met side-chain relative to normal Met. Structures with Met exposed to solvent had consistently lower free energies than those with buried Met sidechains.
在衰老过程或氧化应激条件下,钙调蛋白的甲硫氨酸残基会发生氧化,导致该蛋白质失去生物活性。我们对C端甲硫氨酸侧链氧化对钙调蛋白性质的影响进行了自由能模拟。模拟结果表明,氧化对蛋白质的三种功能状态均具有去稳定作用:无钙状态、结合钙状态以及同时结合钙和靶肽的状态。由于不同状态的去稳定程度不同,这导致在对蛋白质热稳定性、钙亲和力和靶肽结合的可观察效应方面呈现出更复杂的模式。通过比较在甘氨酸-甲硫氨酸-甘氨酸肽段和蛋白质中氧化一个甲硫氨酸残基的自由能成本,估算了氧化对钙调蛋白解折叠自由能的影响。氧化形式的蛋白质热稳定性适度降低了1 - 3千卡/摩尔,这与0.3千卡/摩尔的实验结果在定性上一致。计算得出的对钙和靶肽亲和力的变化呈现相反趋势。预测第144位的氧化会增强肽结合并减弱钙结合,而第145位的氧化则会减弱肽结合并增强对钙的亲和力。第145位甲硫氨酸氧化的钙调蛋白对靶肽的亲和力较低,这与实验观察到的当使用来自老年大鼠大脑的氧化钙调蛋白时钙调蛋白激活的钙-ATP酶活性降低相关。因此,我们的模拟表明第145位甲硫氨酸是钙调蛋白C端片段中的氧化位点。计算出的自由能变化背后的微观机制似乎是氧化的甲硫氨酸侧链相对于正常甲硫氨酸对水具有更大的亲和力。甲硫氨酸暴露于溶剂中的结构的自由能始终低于甲硫氨酸侧链被掩埋的结构。