Chen Xuehui, Christopher Alexandra, Jones Jonathan P, Bell Stephen G, Guo Qing, Xu Feng, Rao Zihe, Wong Luet-Lok
Laboratory of Structural Biology, Department of Biological Science and Technology & Ministry of Education Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.
J Biol Chem. 2002 Oct 4;277(40):37519-26. doi: 10.1074/jbc.M203762200. Epub 2002 Jul 11.
We reported previously that the F87W/Y96F/V247L mutant of cytochrome P-450cam (CYP101) from Pseudomonas putida catalyzed the rapid oxidation of lightly chlorinated benzenes, but pentachlorobenzene oxidation was slow (Jones, J. P., O'Hare, E. J., and Wong, L. L. (2001) Eur. J. Biochem. 268, 1460-1467). In the present work, we determined the crystal structure of this mutant with bound 1,3,5-trichlorobenzene. The substrate was bound to crystallographically independent CYP101 molecules in at least three different orientations, which were distinguished by the angle between the benzene ring and the porphyrin, and one orientation contained an Fe-Cl interaction. In another orientation, the substrate was almost parallel to the heme, with a C-H bond closest to the iron. The enzyme/substrate contacts suggested that the L244A mutation should promote the binding of pentachlorobenzene and hexachlorobenzene by creating space to accommodate the extra chlorines. The F87W/Y96F/L244A/V247L mutant thus designed was found to oxidize pentachlorobenzene at a rate of 82.5 nmol (nmol CYP101)(-1) min(-1), 45 times faster than the F87W/Y96F/V247L parent mutant. The rate of hexachlorobenzene oxidation was increased 200-fold, to 2.0 min(-1). Both substrates are oxidized to pentachlorophenol, which is degraded by micro-organisms. In principle, the F87W/Y96F/L244A/V247L mutant could have applications in the bioremediation of polychlorinated benzenes.
我们之前报道过,来自恶臭假单胞菌的细胞色素P-450cam(CYP101)的F87W/Y96F/V247L突变体催化轻度氯化苯的快速氧化,但五氯苯的氧化速度较慢(琼斯,J.P.,奥黑尔,E.J.,和黄,L.L.(2001年)《欧洲生物化学杂志》268卷,1460 - 1467页)。在本研究中,我们测定了该突变体与结合的1,3,5 - 三氯苯的晶体结构。底物以至少三种不同取向与晶体学上独立的CYP101分子结合,这些取向通过苯环与卟啉之间的角度来区分,其中一种取向包含铁 - 氯相互作用。在另一种取向中,底物几乎与血红素平行,一个碳氢键最靠近铁。酶/底物接触表明,L244A突变通过创造空间容纳额外的氯原子,应该能促进五氯苯和六氯苯的结合。如此设计的F87W/Y96F/L244A/V247L突变体被发现以82.5纳摩尔(纳摩尔CYP101)⁻¹分钟⁻¹的速度氧化五氯苯,比F87W/Y96F/V247L亲本突变体快45倍。六氯苯的氧化速度提高了200倍,达到2.0分钟⁻¹。两种底物都被氧化为五氯苯酚,五氯苯酚可被微生物降解。原则上,F87W/Y96F/L244A/V247L突变体可应用于多氯苯的生物修复。