Suppr超能文献

不同洋葱伯克霍尔德菌复合体菌株在分化良好的人气道上皮细胞中的上皮细胞侵袭模式。

Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia.

作者信息

Schwab Ute, Leigh Margaret, Ribeiro Carla, Yankaskas James, Burns Kimberly, Gilligan Peter, Sokol Pamela, Boucher Richard

机构信息

Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599-7248, USA.

出版信息

Infect Immun. 2002 Aug;70(8):4547-55. doi: 10.1128/IAI.70.8.4547-4555.2002.

Abstract

Burkholderia cepacia has emerged as a serious respiratory pathogen in cystic fibrosis (CF) patients. The clinical course of B. cepacia infections is variable, but approximately 20% of patients eventually succumb to the cepacia syndrome, which is characterized as a fatal necrotizing pneumonia with bacteremia. The mechanisms that permit B. cepacia to cause bacteremia are not yet known but probably involve sequential penetration of airway barriers. This study evaluated the abilities of different species of the B. cepacia complex, including a strain from the ET12 lineage (BC-7, genomovar III, cblA(+)), which is associated with most cepacia syndrome fatalities among CF populations, a genomovar IV strain (HI2258), and a genomovar II strain (J-1) to penetrate polarized, well-differentiated human airway epithelial cell cultures. As revealed by light and electron microscopy, all three B. cepacia strains tested circumvented the mechanical barriers of mucus and ciliary transport to penetrate the airway epithelium but they used different routes. The BC-7 strain (genomovar III) formed biofilms in close proximity to the apical cell surface, followed by invasion and destruction of epithelial cells. This process involved disruption of the glycocalyx and rearrangements of the actin cytoskeleton. The HI2258 strain (genomovar IV) did not form biofilms, and the majority of bacteria that penetrated the epithelium were located between epithelial cells, suggesting paracytosis. Strain J-1 penetrated the epithelium both by cell destruction and paracytosis. These studies suggest that the distinct invasion pathways employed by B. cepacia may account for differences in virulence between B. cepacia genomovars.

摘要

洋葱伯克霍尔德菌已成为囊性纤维化(CF)患者严重的呼吸道病原体。洋葱伯克霍尔德菌感染的临床病程具有变异性,但约20%的患者最终会死于洋葱伯克霍尔德菌综合征,其特征为伴有菌血症的致命坏死性肺炎。洋葱伯克霍尔德菌导致菌血症的机制尚不清楚,但可能涉及气道屏障的逐步穿透。本研究评估了洋葱伯克霍尔德菌复合体不同菌种的能力,包括一株来自ET12谱系的菌株(BC - 7,基因变种III,cblA(+)),该菌株与CF人群中大多数洋葱伯克霍尔德菌综合征死亡病例相关,一株基因变种IV菌株(HI2258),以及一株基因变种II菌株(J - 1)穿透极化、分化良好的人气道上皮细胞培养物的能力。光镜和电镜显示,所测试的所有三株洋葱伯克霍尔德菌均绕过黏液和纤毛转运的机械屏障穿透气道上皮,但它们采用了不同的途径。BC - 7菌株(基因变种III)在靠近顶端细胞表面形成生物膜,随后侵袭并破坏上皮细胞。这一过程涉及糖萼的破坏和肌动蛋白细胞骨架的重排。HI2258菌株(基因变种IV)不形成生物膜,穿透上皮的大多数细菌位于上皮细胞之间,提示为旁细胞转运。J - 1菌株通过细胞破坏和旁细胞转运两种方式穿透上皮。这些研究表明,洋葱伯克霍尔德菌采用的不同侵袭途径可能解释了洋葱伯克霍尔德菌不同基因变种之间毒力的差异。

相似文献

2
Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis.
Am J Respir Crit Care Med. 2001 Jul 1;164(1):92-6. doi: 10.1164/ajrccm.164.1.2011153.
4
Lack of cable pili expression by cblA-containing Burkholderia cepacia complex.
Microbiology (Reading). 2002 Nov;148(Pt 11):3477-3484. doi: 10.1099/00221287-148-11-3477.
5
Differential invasion of respiratory epithelial cells by members of the Burkholderia cepacia complex.
Clin Microbiol Infect. 2002 Jan;8(1):47-9. doi: 10.1046/j.1469-0691.2002.00356.x.
6
Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection.
Infect Immun. 2002 Mar;70(3):1081-6. doi: 10.1128/IAI.70.3.1081-1086.2002.
7
Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy.
Environ Microbiol. 2001 Feb;3(2):137-43. doi: 10.1046/j.1462-2920.2001.00175.x.
8
Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium.
Cell Microbiol. 2002 Feb;4(2):73-86. doi: 10.1046/j.1462-5822.2002.00171.x.

引用本文的文献

2
Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy.
Pharmaceutics. 2022 Nov 27;14(12):2619. doi: 10.3390/pharmaceutics14122619.
4
The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia.
Respir Res. 2020 Jul 17;21(1):190. doi: 10.1186/s12931-020-01454-5.
6
Small Noncoding Regulatory RNAs from and Complex.
Int J Mol Sci. 2018 Nov 27;19(12):3759. doi: 10.3390/ijms19123759.
8
Virulence traits associated with ST856 epidemic strain isolated from cystic fibrosis patients.
Antimicrob Resist Infect Control. 2017 Jun 6;6:57. doi: 10.1186/s13756-017-0215-y. eCollection 2017.
9
Burkholderia cepacia Complex Vaccines: Where Do We Go from here?
Vaccines (Basel). 2016 Apr 15;4(2):10. doi: 10.3390/vaccines4020010.

本文引用的文献

3
N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms.
Microbiology (Reading). 2001 Dec;147(Pt 12):3249-62. doi: 10.1099/00221287-147-12-3249.
4
Taxonomy and identification of the Burkholderia cepacia complex.
J Clin Microbiol. 2001 Oct;39(10):3427-36. doi: 10.1128/JCM.39.10.3427-3436.2001.
5
The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility.
Microbiology (Reading). 2001 Sep;147(Pt 9):2517-2528. doi: 10.1099/00221287-147-9-2517.
6
Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis.
Am J Respir Crit Care Med. 2001 Jul 1;164(1):92-6. doi: 10.1164/ajrccm.164.1.2011153.
7
Immunolocalisation of Burkholderia cepacia in the lungs of cystic fibrosis patients.
J Med Microbiol. 2001 Jun;50(6):535-546. doi: 10.1099/0022-1317-50-6-535.
8
Invasion of human type II pneumocytes by Burkholderia cepacia.
Microb Pathog. 2001 Mar;30(3):167-70. doi: 10.1006/mpat.2000.0418.
9
Role of commensal relationships on the spatial structure of a surface-attached microbial consortium.
Environ Microbiol. 2000 Feb;2(1):59-68. doi: 10.1046/j.1462-2920.2000.00084.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验