Suppr超能文献

Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium.

作者信息

Sajjan Umadevi, Ackerley Cameron, Forstner Janet

机构信息

Departments of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Cell Microbiol. 2002 Feb;4(2):73-86. doi: 10.1046/j.1462-5822.2002.00171.x.

Abstract

A highly transmissible strain of Burkholderia cepacia from genomovar III carries the cable pilin gene, expresses the 22 kDa adhesin (cblA +ve/Adh +ve), binds to cytokeratin 13 (CK13) and is invasive. CK13 is expressed abundantly in the airway epithelia of cystic fibrosis (CF) patients. We have now investigated whether binding of cblA +ve/Adh +ve B. cepacia to CK13 potentiates bacterial invasion and epithelial damage using bronchial epithelial cell cultures differentiated into either squamous (CK13-enriched) or mucociliary (CK13-deficient) epithelia. Three different B. cepacia isolates (cblA +ve/Adh +ve, cblA +ve/Adh -ve and cblA -ve/Adh -ve) showed minimal binding to mucociliary cultures, and did not invade or cause cell damage. In contrast, the cblA +ve/Adh +ve isolate, but not others, bound to CK13-expressing cells in squamous cultures, caused cytotoxicity and stimulated IL-8 release within 2 h. By 24 h, this isolate invaded and migrated across the squamous culture, causing moderate to severe epithelial damage. A specific antiadhesin antibody, which blocked the initial binding of the cblA +ve/Adh +ve isolate to CK13, significantly inhibited all the pathologic effects. Transmission electron microscopy of squamous cultures incubated with the cblA +ve/Adh +ve isolate, revealed bacteria on the surface surrounded by filopodia by 2 h, and within the cells in membrane-bound vesicles by 24 h. Bacteria were also observed free in the cytoplasm, surrounded by intermediate filaments containing CK13. These findings suggest that binding of B. cepacia to CK13 is an important initial event and that it promotes bacterial invasion and epithelial damage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验