Suppr超能文献

通过计算机模拟数据筛选从大型体外基因表达谱数据集中识别新的血管生成靶点。

In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set.

作者信息

Gerritsen Mary E, Soriano Robert, Yang Suya, Ingle Gladys, Zlot Constance, Toy Karen, Winer Jane, Draksharapu Aparna, Peale Franklin, Wu Thomas D, Williams P Mickey

机构信息

Department of Cardiovascular Research, Genentech, South San Francisco, California 94080, USA.

出版信息

Physiol Genomics. 2002 Jul 12;10(1):13-20. doi: 10.1152/physiolgenomics.00035.2002.

Abstract

The objective of this study was to use gene expression data from well-defined cell culture models, in combination with expression data from diagnostic samples of human diseased tissues, to identify potential therapeutic targets and markers of disease. Using Affymetrix oligonucleotide array technology, we identified a common profile of genes upregulated during endothelial morphogenesis into tubelike structures in three in vitro models of angiogenesis. Rigorous data selection criteria were used to identify a list of over 1,000 genes whose expression was increased more than twofold over baseline at either 4, 8, 24, 40 or 50 h. To further refine and prioritize this list, we used standard bioinformatic algorithms to identify potential transmembrane and secreted proteins. We then overlapped this gene set with genes upregulated in colon tumors vs. normal colon, resulting in a subset of 128 genes in common with our endothelial list. We removed from this list those genes expressed in 6 different colon tumor lines, resulting in a list of 24 putative, vascular-specific angiogenesis-associated genes. Three genes, gp34, stanniocalcin-1 (STC-1), and GA733-1, were expressed at levels 10-fold or more in colon tumors compared with normal mucosa. We validated the vascular-specific expression of one of these genes, STC-1, by in situ hybridization. The ability to combine in vitro and in vivo data sets should permit one to identify putative angiogenesis target genes in various tumors, chronic inflammation, and other disorders where therapeutic manipulation of angiogenesis is a desirable treatment modality.

摘要

本研究的目的是利用来自明确细胞培养模型的基因表达数据,结合人类疾病组织诊断样本的表达数据,来识别潜在的治疗靶点和疾病标志物。使用Affymetrix寡核苷酸阵列技术,我们在三种体外血管生成模型中确定了在内皮细胞形成管状结构过程中上调的一组共同基因。采用严格的数据选择标准来确定一份超过1000个基因的列表,这些基因在4、8、24、40或50小时时的表达比基线增加了两倍以上。为了进一步优化并对该列表进行排序,我们使用标准生物信息学算法来识别潜在的跨膜蛋白和分泌蛋白。然后,我们将这个基因集与结肠癌肿瘤组织相对于正常结肠组织中上调的基因进行比对,结果得到了与我们的内皮细胞基因列表有128个共同基因的子集。我们从这个列表中剔除了在6种不同结肠肿瘤细胞系中表达的基因,从而得到了一份包含24个假定的、血管特异性血管生成相关基因的列表。与正常黏膜相比,gp34、骨钙素-1(STC-1)和GA733-1这三个基因在结肠癌肿瘤组织中的表达水平高出10倍或更多。我们通过原位杂交验证了其中一个基因STC-1的血管特异性表达。结合体外和体内数据集的能力应能使人们在各种肿瘤、慢性炎症以及其他需要对血管生成进行治疗性干预的疾病中识别出假定的血管生成靶基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验