Dey Joykrishna, O'Donoghue AnnMarie C, More O'Ferrall Rory A
Department of Chemistry and Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
J Am Chem Soc. 2002 Jul 24;124(29):8561-74. doi: 10.1021/ja0126125.
Equilibrium constants (K(de)) are reported for the dehydration of hydrates of benzene, naphthalene, phenanthrene, and anthracene. Free energies of formation of the hydrates (DeltaG(o) (f)(aq)) are derived by combining free energies of formation of the parent (dihydroaromatic) hydrocarbon with estimates of the increment in free energy (DeltaG(OH)) accompanying replacement of a hydrogen atom of the hydrocarbon by a hydroxyl group. Combining these in turn with free energies of formation of H(2)O and of the aromatic hydrocarbon products furnishes the desired equilibrium constants. The method depends on the availability of thermodynamic data (i) for the hydrocarbons from which the hydrates are derived by hydroxyl substitution and (ii) for a sufficient range of alcohols to assess the structural dependence of DeltaG(OH). The data comprise chiefly heats of formation and standard entropies in the gas phase and free energies of transfer from the gas phase to aqueous solution (the latter being derived from vapor pressures and solubilities). They also include experimental measurements of equilibrium constants for dehydration of alcohols, especially cyclic, allylic, and benzylic alcohols. In general DeltaG(OH) depends on whether the alcohol is (a) primary, secondary, or tertiary; (b) allylic or benzylic; and (c) open chain or cyclic. Differences in geminal interactions of the hydroxyl group of the alcohol with alpha-alkyl and vinyl or phenyl groups account for variations in DeltaG(OH) of 5 kcal mol(-1). Weaker variations which arise from beta-vinyl/OH or beta-phenyl/OH interactions present in the aromatic hydrates but not in experimentally studied analogues are estimated as 1.0 kcal mol(-1). Equilibrium constants for dehydration may be expressed as their negative logs (pK(de)). Reactions yielding the following aliphatic, aromatic, and antiaromatic unsaturated products then have pK(de) values: +4.8, ethene; +15.0, ethyne; +22.1, cyclopropene; +28.4 cyclobutadiene; -22.2, benzene; -14.6, naphthalene; -9.2, phenanthrene; -7.4, anthracene. Large positive values are associated with formation of strained or antiaromatic double bonds and large negative values with aromatic double bonds. Trends in pK(de) parallel those of heats of hydrogenation. The results illustrate the usefulness of a substituent treatment for extending the range of currently available free energies of formation. In addition to hydroxyl substituent effects, DeltaG(OH), values of DeltaG(pi) for substitution of a pi-bond in a hydrocarbon are reported.
报道了苯、萘、菲和蒽水合物脱水反应的平衡常数(K(de))。水合物生成自由能(ΔG(o) (f)(aq))通过将母体(二氢芳烃)烃的生成自由能与烃中一个氢原子被羟基取代时自由能的增量(ΔG(OH))估计值相结合而得到。再将这些与H(2)O和芳烃产物的生成自由能相结合,就得到了所需的平衡常数。该方法依赖于热力学数据的可用性:(i) 对于通过羟基取代得到水合物的烃类;(ii) 对于足够多的醇类,以评估ΔG(OH)的结构依赖性。数据主要包括气相中的生成热和标准熵以及从气相转移到水溶液的自由能(后者由蒸气压和溶解度推导得出)。还包括醇类脱水反应平衡常数的实验测量值,特别是环状、烯丙基和苄基醇。一般来说,ΔG(OH)取决于醇是 (a) 伯醇、仲醇还是叔醇;(b) 烯丙基或苄基;以及 (c) 开链或环状。醇的羟基与α-烷基和乙烯基或苯基的偕位相互作用的差异导致ΔG(OH)变化5 kcal mol(-1)。芳香水合物中存在但在实验研究的类似物中不存在的β-乙烯基/OH或β-苯基/OH相互作用引起的较弱变化估计为1.0 kcal mol(-1)。脱水反应的平衡常数可以表示为其负对数(pK(de))。生成以下脂肪族、芳香族和反芳香族不饱和产物的反应的pK(de)值为:+4.8,乙烯;+15.0,乙炔;+22.1,环丙烯;+28.4环丁二烯;-22.2,苯;-14.6,萘;-9.2,菲;-7.4,蒽。大的正值与形成张力或反芳香族双键相关,大的负值与芳香族双键相关。pK(de)的趋势与氢化热的趋势平行。结果说明了取代基处理对于扩展当前可用生成自由能范围的有用性。除了羟基取代基效应(ΔG(OH))外,还报道了烃中π键取代的ΔG(pi)值。